view mercurial/profiling.py @ 32804:086c1ef0f666

profile: introduce a "start" method to the profile context The start method is doing all profiler setup and activation. It is currently unconditionally called by '__init__' but this will be made more flexible in later changesets.
author Pierre-Yves David <pierre-yves.david@octobus.net>
date Fri, 09 Jun 2017 11:39:53 +0100
parents 4483696dacee
children 37ec8f24d912
line wrap: on
line source

# profiling.py - profiling functions
#
# Copyright 2016 Gregory Szorc <gregory.szorc@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import, print_function

import contextlib

from .i18n import _
from . import (
    encoding,
    error,
    extensions,
    util,
)

def _loadprofiler(ui, profiler):
    """load profiler extension. return profile method, or None on failure"""
    extname = profiler
    extensions.loadall(ui, whitelist=[extname])
    try:
        mod = extensions.find(extname)
    except KeyError:
        return None
    else:
        return getattr(mod, 'profile', None)

@contextlib.contextmanager
def lsprofile(ui, fp):
    format = ui.config('profiling', 'format', default='text')
    field = ui.config('profiling', 'sort', default='inlinetime')
    limit = ui.configint('profiling', 'limit', default=30)
    climit = ui.configint('profiling', 'nested', default=0)

    if format not in ['text', 'kcachegrind']:
        ui.warn(_("unrecognized profiling format '%s'"
                    " - Ignored\n") % format)
        format = 'text'

    try:
        from . import lsprof
    except ImportError:
        raise error.Abort(_(
            'lsprof not available - install from '
            'http://codespeak.net/svn/user/arigo/hack/misc/lsprof/'))
    p = lsprof.Profiler()
    p.enable(subcalls=True)
    try:
        yield
    finally:
        p.disable()

        if format == 'kcachegrind':
            from . import lsprofcalltree
            calltree = lsprofcalltree.KCacheGrind(p)
            calltree.output(fp)
        else:
            # format == 'text'
            stats = lsprof.Stats(p.getstats())
            stats.sort(field)
            stats.pprint(limit=limit, file=fp, climit=climit)

@contextlib.contextmanager
def flameprofile(ui, fp):
    try:
        from flamegraph import flamegraph
    except ImportError:
        raise error.Abort(_(
            'flamegraph not available - install from '
            'https://github.com/evanhempel/python-flamegraph'))
    # developer config: profiling.freq
    freq = ui.configint('profiling', 'freq', default=1000)
    filter_ = None
    collapse_recursion = True
    thread = flamegraph.ProfileThread(fp, 1.0 / freq,
                                      filter_, collapse_recursion)
    start_time = util.timer()
    try:
        thread.start()
        yield
    finally:
        thread.stop()
        thread.join()
        print('Collected %d stack frames (%d unique) in %2.2f seconds.' % (
            util.timer() - start_time, thread.num_frames(),
            thread.num_frames(unique=True)))

@contextlib.contextmanager
def statprofile(ui, fp):
    from . import statprof

    freq = ui.configint('profiling', 'freq', default=1000)
    if freq > 0:
        # Cannot reset when profiler is already active. So silently no-op.
        if statprof.state.profile_level == 0:
            statprof.reset(freq)
    else:
        ui.warn(_("invalid sampling frequency '%s' - ignoring\n") % freq)

    statprof.start(mechanism='thread')

    try:
        yield
    finally:
        data = statprof.stop()

        profformat = ui.config('profiling', 'statformat', 'hotpath')

        formats = {
            'byline': statprof.DisplayFormats.ByLine,
            'bymethod': statprof.DisplayFormats.ByMethod,
            'hotpath': statprof.DisplayFormats.Hotpath,
            'json': statprof.DisplayFormats.Json,
            'chrome': statprof.DisplayFormats.Chrome,
        }

        if profformat in formats:
            displayformat = formats[profformat]
        else:
            ui.warn(_('unknown profiler output format: %s\n') % profformat)
            displayformat = statprof.DisplayFormats.Hotpath

        kwargs = {}

        def fraction(s):
            if s.endswith('%'):
                v = float(s[:-1]) / 100
            else:
                v = float(s)
            if 0 <= v <= 1:
                return v
            raise ValueError(s)

        if profformat == 'chrome':
            showmin = ui.configwith(fraction, 'profiling', 'showmin', 0.005)
            showmax = ui.configwith(fraction, 'profiling', 'showmax', 0.999)
            kwargs.update(minthreshold=showmin, maxthreshold=showmax)

        statprof.display(fp, data=data, format=displayformat, **kwargs)

class profile(object):
    """Start profiling.

    Profiling is active when the context manager is active. When the context
    manager exits, profiling results will be written to the configured output.
    """
    def __init__(self, ui):
        self._ui = ui
        self._output = None
        self._fp = None
        self._profiler = None
        self._entered = False
        self._started = False

    def __enter__(self):
        self._entered = True
        self.start()

    def start(self):
        """Start profiling.

        The profiling will stop at the context exit.

        If the profiler was already started, this has no effect."""
        if not self._entered:
            raise error.ProgrammingError()
        if self._started:
            return
        self._started = True
        profiler = encoding.environ.get('HGPROF')
        proffn = None
        if profiler is None:
            profiler = self._ui.config('profiling', 'type', default='stat')
        if profiler not in ('ls', 'stat', 'flame'):
            # try load profiler from extension with the same name
            proffn = _loadprofiler(self._ui, profiler)
            if proffn is None:
                self._ui.warn(_("unrecognized profiler '%s' - ignored\n")
                              % profiler)
                profiler = 'stat'

        self._output = self._ui.config('profiling', 'output')

        if self._output == 'blackbox':
            self._fp = util.stringio()
        elif self._output:
            path = self._ui.expandpath(self._output)
            self._fp = open(path, 'wb')
        else:
            self._fp = self._ui.ferr

        if proffn is not None:
            pass
        elif profiler == 'ls':
            proffn = lsprofile
        elif profiler == 'flame':
            proffn = flameprofile
        else:
            proffn = statprofile

        self._profiler = proffn(self._ui, self._fp)
        self._profiler.__enter__()

    def __exit__(self, exception_type, exception_value, traceback):
        if self._profiler is None:
            return
        self._profiler.__exit__(exception_type, exception_value, traceback)
        if self._output:
            if self._output == 'blackbox':
                val = 'Profile:\n%s' % self._fp.getvalue()
                # ui.log treats the input as a format string,
                # so we need to escape any % signs.
                val = val.replace('%', '%%')
                self._ui.log('profile', val)
            self._fp.close()

@contextlib.contextmanager
def maybeprofile(ui):
    """Profile if enabled, else do nothing.

    This context manager can be used to optionally profile if profiling
    is enabled. Otherwise, it does nothing.

    The purpose of this context manager is to make calling code simpler:
    just use a single code path for calling into code you may want to profile
    and this function determines whether to start profiling.
    """
    if ui.configbool('profiling', 'enabled'):
        with profile(ui):
            yield
    else:
        yield