mercurial/similar.py
author Mads Kiilerich <mads@kiilerich.com>
Mon, 11 Jul 2022 22:47:56 +0200
branchstable
changeset 49398 1bad05cfc818
parent 49004 f254fc73d956
permissions -rw-r--r--
rust: bump to memmap2 0.5.3, micro-timer 0.4.0, and crossbeam-channel 0.5.0 The merge in 12adf8c695ed had conflicts in rust/Cargo.lock and rust/hg-core/Cargo.toml . Let's ignore rust/Cargo.lock - it is regenerated. For rust/hg-core/Cargo.toml, stable had dd6b67d5c256 "rust: fix unsound `OwningDirstateMap`" which introduced ouroboros (and dropped stable_deref_trait). Default had ec8d9b5a5e7c "rust-hg-core: upgrade dependencies" which had a lot of churn bumping minimum versions - also patch versions. It is indeed a good idea to bump to *allow* use of latest package. That means that major versions should be bumped for packages after 1.0, and for packages below 1.0 minor versions should be bumped too. But it doesn't work to try enforce a policy of using latest patch by bumping versions at arbitrary times. For good or bad, the merge doesn't seem to have resolved the conflicts correctly, and many of the minor "upgrade dependencies" were lost again. Unfortunately, it also lost the bump of memmap2 to 0.5.3, which is needed for Fedora packaging where 0.4 isn't available. Same with micro-timer bump to 0.4 (which already is used in rhg). crossbeam-channel bump was also lost. This change fixes that regression by redoing these "important" lines of the merge "correctly". I propose this for stable, even though dependency changes on stable branches are annoying.

# similar.py - mechanisms for finding similar files
#
# Copyright 2005-2007 Olivia Mackall <olivia@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.


from .i18n import _
from . import (
    mdiff,
)


def _findexactmatches(repo, added, removed):
    """find renamed files that have no changes

    Takes a list of new filectxs and a list of removed filectxs, and yields
    (before, after) tuples of exact matches.
    """
    # Build table of removed files: {hash(fctx.data()): [fctx, ...]}.
    # We use hash() to discard fctx.data() from memory.
    hashes = {}
    progress = repo.ui.makeprogress(
        _(b'searching for exact renames'),
        total=(len(added) + len(removed)),
        unit=_(b'files'),
    )
    for fctx in removed:
        progress.increment()
        h = hash(fctx.data())
        if h not in hashes:
            hashes[h] = [fctx]
        else:
            hashes[h].append(fctx)

    # For each added file, see if it corresponds to a removed file.
    for fctx in added:
        progress.increment()
        adata = fctx.data()
        h = hash(adata)
        for rfctx in hashes.get(h, []):
            # compare between actual file contents for exact identity
            if adata == rfctx.data():
                yield (rfctx, fctx)
                break

    # Done
    progress.complete()


def _ctxdata(fctx):
    # lazily load text
    orig = fctx.data()
    return orig, mdiff.splitnewlines(orig)


def _score(fctx, otherdata):
    orig, lines = otherdata
    text = fctx.data()
    # mdiff.blocks() returns blocks of matching lines
    # count the number of bytes in each
    equal = 0
    matches = mdiff.blocks(text, orig)
    for x1, x2, y1, y2 in matches:
        for line in lines[y1:y2]:
            equal += len(line)

    lengths = len(text) + len(orig)
    return equal * 2.0 / lengths


def score(fctx1, fctx2):
    return _score(fctx1, _ctxdata(fctx2))


def _findsimilarmatches(repo, added, removed, threshold):
    """find potentially renamed files based on similar file content

    Takes a list of new filectxs and a list of removed filectxs, and yields
    (before, after, score) tuples of partial matches.
    """
    copies = {}
    progress = repo.ui.makeprogress(
        _(b'searching for similar files'), unit=_(b'files'), total=len(removed)
    )
    for r in removed:
        progress.increment()
        data = None
        for a in added:
            bestscore = copies.get(a, (None, threshold))[1]
            if data is None:
                data = _ctxdata(r)
            myscore = _score(a, data)
            if myscore > bestscore:
                copies[a] = (r, myscore)
    progress.complete()

    for dest, v in copies.items():
        source, bscore = v
        yield source, dest, bscore


def _dropempty(fctxs):
    return [x for x in fctxs if x.size() > 0]


def findrenames(repo, added, removed, threshold):
    '''find renamed files -- yields (before, after, score) tuples'''
    wctx = repo[None]
    pctx = wctx.p1()

    # Zero length files will be frequently unrelated to each other, and
    # tracking the deletion/addition of such a file will probably cause more
    # harm than good. We strip them out here to avoid matching them later on.
    addedfiles = _dropempty(wctx[fp] for fp in sorted(added))
    removedfiles = _dropempty(pctx[fp] for fp in sorted(removed) if fp in pctx)

    # Find exact matches.
    matchedfiles = set()
    for (a, b) in _findexactmatches(repo, addedfiles, removedfiles):
        matchedfiles.add(b)
        yield (a.path(), b.path(), 1.0)

    # If the user requested similar files to be matched, search for them also.
    if threshold < 1.0:
        addedfiles = [x for x in addedfiles if x not in matchedfiles]
        for (a, b, score) in _findsimilarmatches(
            repo, addedfiles, removedfiles, threshold
        ):
            yield (a.path(), b.path(), score)