Mercurial > hg-stable
view mercurial/revlogutils/deltas.py @ 40698:2eb48aa0acce
sparse-revlog: align endrevidx usages in the _slicechunktosize
All "startrevidx..endrevidx" ranges in this function are now half-open.
author | Boris Feld <boris.feld@octobus.net> |
---|---|
date | Thu, 15 Nov 2018 14:57:26 +0100 |
parents | fd1d41ccbe38 |
children | 39d29542fe40 |
line wrap: on
line source
# revlogdeltas.py - Logic around delta computation for revlog # # Copyright 2005-2007 Matt Mackall <mpm@selenic.com> # Copyright 2018 Octobus <contact@octobus.net> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. """Helper class to compute deltas stored inside revlogs""" from __future__ import absolute_import import collections import struct # import stuff from node for others to import from revlog from ..node import ( nullrev, ) from ..i18n import _ from .constants import ( REVIDX_ISCENSORED, REVIDX_RAWTEXT_CHANGING_FLAGS, ) from ..thirdparty import ( attr, ) from .. import ( error, mdiff, ) # maximum <delta-chain-data>/<revision-text-length> ratio LIMIT_DELTA2TEXT = 2 class _testrevlog(object): """minimalist fake revlog to use in doctests""" def __init__(self, data, density=0.5, mingap=0, snapshot=()): """data is an list of revision payload boundaries""" self._data = data self._srdensitythreshold = density self._srmingapsize = mingap self._snapshot = set(snapshot) def start(self, rev): if rev == 0: return 0 return self._data[rev - 1] def end(self, rev): return self._data[rev] def length(self, rev): return self.end(rev) - self.start(rev) def __len__(self): return len(self._data) def issnapshot(self, rev): return rev in self._snapshot def slicechunk(revlog, revs, targetsize=None): """slice revs to reduce the amount of unrelated data to be read from disk. ``revs`` is sliced into groups that should be read in one time. Assume that revs are sorted. The initial chunk is sliced until the overall density (payload/chunks-span ratio) is above `revlog._srdensitythreshold`. No gap smaller than `revlog._srmingapsize` is skipped. If `targetsize` is set, no chunk larger than `targetsize` will be yield. For consistency with other slicing choice, this limit won't go lower than `revlog._srmingapsize`. If individual revisions chunk are larger than this limit, they will still be raised individually. >>> data = [ ... 5, #00 (5) ... 10, #01 (5) ... 12, #02 (2) ... 12, #03 (empty) ... 27, #04 (15) ... 31, #05 (4) ... 31, #06 (empty) ... 42, #07 (11) ... 47, #08 (5) ... 47, #09 (empty) ... 48, #10 (1) ... 51, #11 (3) ... 74, #12 (23) ... 85, #13 (11) ... 86, #14 (1) ... 91, #15 (5) ... ] >>> revlog = _testrevlog(data, snapshot=range(16)) >>> list(slicechunk(revlog, list(range(16)))) [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]] >>> list(slicechunk(revlog, [0, 15])) [[0], [15]] >>> list(slicechunk(revlog, [0, 11, 15])) [[0], [11], [15]] >>> list(slicechunk(revlog, [0, 11, 13, 15])) [[0], [11, 13, 15]] >>> list(slicechunk(revlog, [1, 2, 3, 5, 8, 10, 11, 14])) [[1, 2], [5, 8, 10, 11], [14]] Slicing with a maximum chunk size >>> list(slicechunk(revlog, [0, 11, 13, 15], targetsize=15)) [[0], [11], [13], [15]] >>> list(slicechunk(revlog, [0, 11, 13, 15], targetsize=20)) [[0], [11], [13, 15]] """ if targetsize is not None: targetsize = max(targetsize, revlog._srmingapsize) # targetsize should not be specified when evaluating delta candidates: # * targetsize is used to ensure we stay within specification when reading, for chunk in _slicechunktodensity(revlog, revs, revlog._srdensitythreshold, revlog._srmingapsize): for subchunk in _slicechunktosize(revlog, chunk, targetsize): yield subchunk def _slicechunktosize(revlog, revs, targetsize=None): """slice revs to match the target size This is intended to be used on chunk that density slicing selected by that are still too large compared to the read garantee of revlog. This might happens when "minimal gap size" interrupted the slicing or when chain are built in a way that create large blocks next to each other. >>> data = [ ... 3, #0 (3) ... 5, #1 (2) ... 6, #2 (1) ... 8, #3 (2) ... 8, #4 (empty) ... 11, #5 (3) ... 12, #6 (1) ... 13, #7 (1) ... 14, #8 (1) ... ] == All snapshots cases == >>> revlog = _testrevlog(data, snapshot=range(9)) Cases where chunk is already small enough >>> list(_slicechunktosize(revlog, [0], 3)) [[0]] >>> list(_slicechunktosize(revlog, [6, 7], 3)) [[6, 7]] >>> list(_slicechunktosize(revlog, [0], None)) [[0]] >>> list(_slicechunktosize(revlog, [6, 7], None)) [[6, 7]] cases where we need actual slicing >>> list(_slicechunktosize(revlog, [0, 1], 3)) [[0], [1]] >>> list(_slicechunktosize(revlog, [1, 3], 3)) [[1], [3]] >>> list(_slicechunktosize(revlog, [1, 2, 3], 3)) [[1, 2], [3]] >>> list(_slicechunktosize(revlog, [3, 5], 3)) [[3], [5]] >>> list(_slicechunktosize(revlog, [3, 4, 5], 3)) [[3], [5]] >>> list(_slicechunktosize(revlog, [5, 6, 7, 8], 3)) [[5], [6, 7, 8]] >>> list(_slicechunktosize(revlog, [0, 1, 2, 3, 4, 5, 6, 7, 8], 3)) [[0], [1, 2], [3], [5], [6, 7, 8]] Case with too large individual chunk (must return valid chunk) >>> list(_slicechunktosize(revlog, [0, 1], 2)) [[0], [1]] >>> list(_slicechunktosize(revlog, [1, 3], 1)) [[1], [3]] >>> list(_slicechunktosize(revlog, [3, 4, 5], 2)) [[3], [5]] == No Snapshot cases == >>> revlog = _testrevlog(data) Cases where chunk is already small enough >>> list(_slicechunktosize(revlog, [0], 3)) [[0]] >>> list(_slicechunktosize(revlog, [6, 7], 3)) [[6, 7]] >>> list(_slicechunktosize(revlog, [0], None)) [[0]] >>> list(_slicechunktosize(revlog, [6, 7], None)) [[6, 7]] cases where we need actual slicing >>> list(_slicechunktosize(revlog, [0, 1], 3)) [[0], [1]] >>> list(_slicechunktosize(revlog, [1, 3], 3)) [[1], [3]] >>> list(_slicechunktosize(revlog, [1, 2, 3], 3)) [[1], [2, 3]] >>> list(_slicechunktosize(revlog, [3, 5], 3)) [[3], [5]] >>> list(_slicechunktosize(revlog, [3, 4, 5], 3)) [[3], [4, 5]] >>> list(_slicechunktosize(revlog, [5, 6, 7, 8], 3)) [[5], [6, 7, 8]] >>> list(_slicechunktosize(revlog, [0, 1, 2, 3, 4, 5, 6, 7, 8], 3)) [[0], [1, 2], [3], [5], [6, 7, 8]] Case with too large individual chunk (must return valid chunk) >>> list(_slicechunktosize(revlog, [0, 1], 2)) [[0], [1]] >>> list(_slicechunktosize(revlog, [1, 3], 1)) [[1], [3]] >>> list(_slicechunktosize(revlog, [3, 4, 5], 2)) [[3], [5]] == mixed case == >>> revlog = _testrevlog(data, snapshot=[0, 1, 2]) >>> list(_slicechunktosize(revlog, list(range(9)), 5)) [[0, 1], [2], [3, 4, 5], [6, 7, 8]] """ assert targetsize is None or 0 <= targetsize startdata = revlog.start(revs[0]) enddata = revlog.end(revs[-1]) fullspan = enddata - startdata if targetsize is None or fullspan <= targetsize: yield revs return startrevidx = 0 endrevidx = 1 iterrevs = enumerate(revs) next(iterrevs) # skip first rev. # first step: get snapshots out of the way for idx, r in iterrevs: span = revlog.end(r) - startdata snapshot = revlog.issnapshot(r) if span <= targetsize and snapshot: endrevidx = idx + 1 else: chunk = _trimchunk(revlog, revs, startrevidx, endrevidx) if chunk: yield chunk startrevidx = idx startdata = revlog.start(r) endrevidx = idx + 1 if not snapshot: break # for the others, we use binary slicing to quickly converge toward valid # chunks (otherwise, we might end up looking for start/end of many # revisions). This logic is not looking for the perfect slicing point, it # focuses on quickly converging toward valid chunks. nbitem = len(revs) while (enddata - startdata) > targetsize: endrevidx = nbitem if nbitem - startrevidx <= 1: break # protect against individual chunk larger than limit localenddata = revlog.end(revs[endrevidx - 1]) span = localenddata - startdata while span > targetsize: if endrevidx - startrevidx <= 1: break # protect against individual chunk larger than limit endrevidx -= (endrevidx - startrevidx) // 2 localenddata = revlog.end(revs[endrevidx - 1]) span = localenddata - startdata chunk = _trimchunk(revlog, revs, startrevidx, endrevidx) if chunk: yield chunk startrevidx = endrevidx startdata = revlog.start(revs[startrevidx]) chunk = _trimchunk(revlog, revs, startrevidx) if chunk: yield chunk def _slicechunktodensity(revlog, revs, targetdensity=0.5, mingapsize=0): """slice revs to reduce the amount of unrelated data to be read from disk. ``revs`` is sliced into groups that should be read in one time. Assume that revs are sorted. The initial chunk is sliced until the overall density (payload/chunks-span ratio) is above `targetdensity`. No gap smaller than `mingapsize` is skipped. >>> revlog = _testrevlog([ ... 5, #00 (5) ... 10, #01 (5) ... 12, #02 (2) ... 12, #03 (empty) ... 27, #04 (15) ... 31, #05 (4) ... 31, #06 (empty) ... 42, #07 (11) ... 47, #08 (5) ... 47, #09 (empty) ... 48, #10 (1) ... 51, #11 (3) ... 74, #12 (23) ... 85, #13 (11) ... 86, #14 (1) ... 91, #15 (5) ... ]) >>> list(_slicechunktodensity(revlog, list(range(16)))) [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]] >>> list(_slicechunktodensity(revlog, [0, 15])) [[0], [15]] >>> list(_slicechunktodensity(revlog, [0, 11, 15])) [[0], [11], [15]] >>> list(_slicechunktodensity(revlog, [0, 11, 13, 15])) [[0], [11, 13, 15]] >>> list(_slicechunktodensity(revlog, [1, 2, 3, 5, 8, 10, 11, 14])) [[1, 2], [5, 8, 10, 11], [14]] >>> list(_slicechunktodensity(revlog, [1, 2, 3, 5, 8, 10, 11, 14], ... mingapsize=20)) [[1, 2, 3, 5, 8, 10, 11], [14]] >>> list(_slicechunktodensity(revlog, [1, 2, 3, 5, 8, 10, 11, 14], ... targetdensity=0.95)) [[1, 2], [5], [8, 10, 11], [14]] >>> list(_slicechunktodensity(revlog, [1, 2, 3, 5, 8, 10, 11, 14], ... targetdensity=0.95, mingapsize=12)) [[1, 2], [5, 8, 10, 11], [14]] """ start = revlog.start length = revlog.length if len(revs) <= 1: yield revs return deltachainspan = segmentspan(revlog, revs) if deltachainspan < mingapsize: yield revs return readdata = deltachainspan chainpayload = sum(length(r) for r in revs) if deltachainspan: density = chainpayload / float(deltachainspan) else: density = 1.0 if density >= targetdensity: yield revs return # Store the gaps in a heap to have them sorted by decreasing size gaps = [] prevend = None for i, rev in enumerate(revs): revstart = start(rev) revlen = length(rev) # Skip empty revisions to form larger holes if revlen == 0: continue if prevend is not None: gapsize = revstart - prevend # only consider holes that are large enough if gapsize > mingapsize: gaps.append((gapsize, i)) prevend = revstart + revlen # sort the gaps to pop them from largest to small gaps.sort() # Collect the indices of the largest holes until the density is acceptable selected = [] while gaps and density < targetdensity: gapsize, gapidx = gaps.pop() selected.append(gapidx) # the gap sizes are stored as negatives to be sorted decreasingly # by the heap readdata -= gapsize if readdata > 0: density = chainpayload / float(readdata) else: density = 1.0 selected.sort() # Cut the revs at collected indices previdx = 0 for idx in selected: chunk = _trimchunk(revlog, revs, previdx, idx) if chunk: yield chunk previdx = idx chunk = _trimchunk(revlog, revs, previdx) if chunk: yield chunk def _trimchunk(revlog, revs, startidx, endidx=None): """returns revs[startidx:endidx] without empty trailing revs Doctest Setup >>> revlog = _testrevlog([ ... 5, #0 ... 10, #1 ... 12, #2 ... 12, #3 (empty) ... 17, #4 ... 21, #5 ... 21, #6 (empty) ... ]) Contiguous cases: >>> _trimchunk(revlog, [0, 1, 2, 3, 4, 5, 6], 0) [0, 1, 2, 3, 4, 5] >>> _trimchunk(revlog, [0, 1, 2, 3, 4, 5, 6], 0, 5) [0, 1, 2, 3, 4] >>> _trimchunk(revlog, [0, 1, 2, 3, 4, 5, 6], 0, 4) [0, 1, 2] >>> _trimchunk(revlog, [0, 1, 2, 3, 4, 5, 6], 2, 4) [2] >>> _trimchunk(revlog, [0, 1, 2, 3, 4, 5, 6], 3) [3, 4, 5] >>> _trimchunk(revlog, [0, 1, 2, 3, 4, 5, 6], 3, 5) [3, 4] Discontiguous cases: >>> _trimchunk(revlog, [1, 3, 5, 6], 0) [1, 3, 5] >>> _trimchunk(revlog, [1, 3, 5, 6], 0, 2) [1] >>> _trimchunk(revlog, [1, 3, 5, 6], 1, 3) [3, 5] >>> _trimchunk(revlog, [1, 3, 5, 6], 1) [3, 5] """ length = revlog.length if endidx is None: endidx = len(revs) # If we have a non-emtpy delta candidate, there are nothing to trim if revs[endidx - 1] < len(revlog): # Trim empty revs at the end, except the very first revision of a chain while (endidx > 1 and endidx > startidx and length(revs[endidx - 1]) == 0): endidx -= 1 return revs[startidx:endidx] def segmentspan(revlog, revs): """Get the byte span of a segment of revisions revs is a sorted array of revision numbers >>> revlog = _testrevlog([ ... 5, #0 ... 10, #1 ... 12, #2 ... 12, #3 (empty) ... 17, #4 ... ]) >>> segmentspan(revlog, [0, 1, 2, 3, 4]) 17 >>> segmentspan(revlog, [0, 4]) 17 >>> segmentspan(revlog, [3, 4]) 5 >>> segmentspan(revlog, [1, 2, 3,]) 7 >>> segmentspan(revlog, [1, 3]) 7 """ if not revs: return 0 end = revlog.end(revs[-1]) return end - revlog.start(revs[0]) def _textfromdelta(fh, revlog, baserev, delta, p1, p2, flags, expectednode): """build full text from a (base, delta) pair and other metadata""" # special case deltas which replace entire base; no need to decode # base revision. this neatly avoids censored bases, which throw when # they're decoded. hlen = struct.calcsize(">lll") if delta[:hlen] == mdiff.replacediffheader(revlog.rawsize(baserev), len(delta) - hlen): fulltext = delta[hlen:] else: # deltabase is rawtext before changed by flag processors, which is # equivalent to non-raw text basetext = revlog.revision(baserev, _df=fh, raw=False) fulltext = mdiff.patch(basetext, delta) try: res = revlog._processflags(fulltext, flags, 'read', raw=True) fulltext, validatehash = res if validatehash: revlog.checkhash(fulltext, expectednode, p1=p1, p2=p2) if flags & REVIDX_ISCENSORED: raise error.StorageError(_('node %s is not censored') % expectednode) except error.CensoredNodeError: # must pass the censored index flag to add censored revisions if not flags & REVIDX_ISCENSORED: raise return fulltext @attr.s(slots=True, frozen=True) class _deltainfo(object): distance = attr.ib() deltalen = attr.ib() data = attr.ib() base = attr.ib() chainbase = attr.ib() chainlen = attr.ib() compresseddeltalen = attr.ib() snapshotdepth = attr.ib() def isgooddeltainfo(revlog, deltainfo, revinfo): """Returns True if the given delta is good. Good means that it is within the disk span, disk size, and chain length bounds that we know to be performant.""" if deltainfo is None: return False # - 'deltainfo.distance' is the distance from the base revision -- # bounding it limits the amount of I/O we need to do. # - 'deltainfo.compresseddeltalen' is the sum of the total size of # deltas we need to apply -- bounding it limits the amount of CPU # we consume. textlen = revinfo.textlen defaultmax = textlen * 4 maxdist = revlog._maxdeltachainspan if not maxdist: maxdist = deltainfo.distance # ensure the conditional pass maxdist = max(maxdist, defaultmax) # Bad delta from read span: # # If the span of data read is larger than the maximum allowed. # # In the sparse-revlog case, we rely on the associated "sparse reading" # to avoid issue related to the span of data. In theory, it would be # possible to build pathological revlog where delta pattern would lead # to too many reads. However, they do not happen in practice at all. So # we skip the span check entirely. if not revlog._sparserevlog and maxdist < deltainfo.distance: return False # Bad delta from new delta size: # # If the delta size is larger than the target text, storing the # delta will be inefficient. if textlen < deltainfo.deltalen: return False # Bad delta from cumulated payload size: # # If the sum of delta get larger than K * target text length. if textlen * LIMIT_DELTA2TEXT < deltainfo.compresseddeltalen: return False # Bad delta from chain length: # # If the number of delta in the chain gets too high. if (revlog._maxchainlen and revlog._maxchainlen < deltainfo.chainlen): return False # bad delta from intermediate snapshot size limit # # If an intermediate snapshot size is higher than the limit. The # limit exist to prevent endless chain of intermediate delta to be # created. if (deltainfo.snapshotdepth is not None and (textlen >> deltainfo.snapshotdepth) < deltainfo.deltalen): return False # bad delta if new intermediate snapshot is larger than the previous # snapshot if (deltainfo.snapshotdepth and revlog.length(deltainfo.base) < deltainfo.deltalen): return False return True def _candidategroups(revlog, textlen, p1, p2, cachedelta): """Provides group of revision to be tested as delta base This top level function focus on emitting groups with unique and worthwhile content. See _raw_candidate_groups for details about the group order. """ # should we try to build a delta? if not (len(revlog) and revlog._storedeltachains): yield None return deltalength = revlog.length deltaparent = revlog.deltaparent good = None deltas_limit = textlen * LIMIT_DELTA2TEXT tested = set([nullrev]) candidates = _refinedgroups(revlog, p1, p2, cachedelta) while True: temptative = candidates.send(good) if temptative is None: break group = [] for rev in temptative: # skip over empty delta (no need to include them in a chain) while (revlog._generaldelta and not (rev == nullrev or rev in tested or deltalength(rev))): tested.add(rev) rev = deltaparent(rev) # filter out revision we tested already if rev in tested: continue tested.add(rev) # filter out delta base that will never produce good delta if deltas_limit < revlog.length(rev): continue # no need to try a delta against nullrev, this will be done as a # last resort. if rev == nullrev: continue # no delta for rawtext-changing revs (see "candelta" for why) if revlog.flags(rev) & REVIDX_RAWTEXT_CHANGING_FLAGS: continue group.append(rev) if group: # XXX: in the sparse revlog case, group can become large, # impacting performances. Some bounding or slicing mecanism # would help to reduce this impact. good = yield tuple(group) yield None def _findsnapshots(revlog, cache, start_rev): """find snapshot from start_rev to tip""" deltaparent = revlog.deltaparent issnapshot = revlog.issnapshot for rev in revlog.revs(start_rev): if issnapshot(rev): cache[deltaparent(rev)].append(rev) def _refinedgroups(revlog, p1, p2, cachedelta): good = None # First we try to reuse a the delta contained in the bundle. # (or from the source revlog) # # This logic only applies to general delta repositories and can be disabled # through configuration. Disabling reuse source delta is useful when # we want to make sure we recomputed "optimal" deltas. if cachedelta and revlog._generaldelta and revlog._lazydeltabase: # Assume what we received from the server is a good choice # build delta will reuse the cache good = yield (cachedelta[0],) if good is not None: yield None return for candidates in _rawgroups(revlog, p1, p2, cachedelta): good = yield candidates if good is not None: break # If sparse revlog is enabled, we can try to refine the available deltas if not revlog._sparserevlog: yield None return # if we have a refinable value, try to refine it if good is not None and good not in (p1, p2) and revlog.issnapshot(good): # refine snapshot down previous = None while previous != good: previous = good base = revlog.deltaparent(good) if base == nullrev: break good = yield (base,) # refine snapshot up # # XXX the _findsnapshots call can be expensive and is "duplicated" with # the one done in `_rawgroups`. Once we start working on performance, # we should make the two logics share this computation. snapshots = collections.defaultdict(list) _findsnapshots(revlog, snapshots, good + 1) previous = None while good != previous: previous = good children = tuple(sorted(c for c in snapshots[good])) good = yield children # we have found nothing yield None def _rawgroups(revlog, p1, p2, cachedelta): """Provides group of revision to be tested as delta base This lower level function focus on emitting delta theorically interresting without looking it any practical details. The group order aims at providing fast or small candidates first. """ gdelta = revlog._generaldelta sparse = revlog._sparserevlog curr = len(revlog) prev = curr - 1 deltachain = lambda rev: revlog._deltachain(rev)[0] if gdelta: # exclude already lazy tested base if any parents = [p for p in (p1, p2) if p != nullrev] if not revlog._deltabothparents and len(parents) == 2: parents.sort() # To minimize the chance of having to build a fulltext, # pick first whichever parent is closest to us (max rev) yield (parents[1],) # then the other one (min rev) if the first did not fit yield (parents[0],) elif len(parents) > 0: # Test all parents (1 or 2), and keep the best candidate yield parents if sparse and parents: snapshots = collections.defaultdict(list) # map: base-rev: snapshot-rev # See if we can use an existing snapshot in the parent chains to use as # a base for a new intermediate-snapshot # # search for snapshot in parents delta chain # map: snapshot-level: snapshot-rev parents_snaps = collections.defaultdict(set) candidate_chains = [deltachain(p) for p in parents] for chain in candidate_chains: for idx, s in enumerate(chain): if not revlog.issnapshot(s): break parents_snaps[idx].add(s) snapfloor = min(parents_snaps[0]) + 1 _findsnapshots(revlog, snapshots, snapfloor) # search for the highest "unrelated" revision # # Adding snapshots used by "unrelated" revision increase the odd we # reuse an independant, yet better snapshot chain. # # XXX instead of building a set of revisions, we could lazily enumerate # over the chains. That would be more efficient, however we stick to # simple code for now. all_revs = set() for chain in candidate_chains: all_revs.update(chain) other = None for r in revlog.revs(prev, snapfloor): if r not in all_revs: other = r break if other is not None: # To avoid unfair competition, we won't use unrelated intermediate # snapshot that are deeper than the ones from the parent delta # chain. max_depth = max(parents_snaps.keys()) chain = deltachain(other) for idx, s in enumerate(chain): if s < snapfloor: continue if max_depth < idx: break if not revlog.issnapshot(s): break parents_snaps[idx].add(s) # Test them as possible intermediate snapshot base # We test them from highest to lowest level. High level one are more # likely to result in small delta floor = None for idx, snaps in sorted(parents_snaps.items(), reverse=True): siblings = set() for s in snaps: siblings.update(snapshots[s]) # Before considering making a new intermediate snapshot, we check # if an existing snapshot, children of base we consider, would be # suitable. # # It give a change to reuse a delta chain "unrelated" to the # current revision instead of starting our own. Without such # re-use, topological branches would keep reopening new chains. # Creating more and more snapshot as the repository grow. if floor is not None: # We only do this for siblings created after the one in our # parent's delta chain. Those created before has less chances # to be valid base since our ancestors had to create a new # snapshot. siblings = [r for r in siblings if floor < r] yield tuple(sorted(siblings)) # then test the base from our parent's delta chain. yield tuple(sorted(snaps)) floor = min(snaps) # No suitable base found in the parent chain, search if any full # snapshots emitted since parent's base would be a suitable base for an # intermediate snapshot. # # It give a chance to reuse a delta chain unrelated to the current # revisions instead of starting our own. Without such re-use, # topological branches would keep reopening new full chains. Creating # more and more snapshot as the repository grow. yield tuple(snapshots[nullrev]) if not sparse: # other approach failed try against prev to hopefully save us a # fulltext. yield (prev,) class deltacomputer(object): def __init__(self, revlog): self.revlog = revlog def buildtext(self, revinfo, fh): """Builds a fulltext version of a revision revinfo: _revisioninfo instance that contains all needed info fh: file handle to either the .i or the .d revlog file, depending on whether it is inlined or not """ btext = revinfo.btext if btext[0] is not None: return btext[0] revlog = self.revlog cachedelta = revinfo.cachedelta baserev = cachedelta[0] delta = cachedelta[1] fulltext = btext[0] = _textfromdelta(fh, revlog, baserev, delta, revinfo.p1, revinfo.p2, revinfo.flags, revinfo.node) return fulltext def _builddeltadiff(self, base, revinfo, fh): revlog = self.revlog t = self.buildtext(revinfo, fh) if revlog.iscensored(base): # deltas based on a censored revision must replace the # full content in one patch, so delta works everywhere header = mdiff.replacediffheader(revlog.rawsize(base), len(t)) delta = header + t else: ptext = revlog.revision(base, _df=fh, raw=True) delta = mdiff.textdiff(ptext, t) return delta def _builddeltainfo(self, revinfo, base, fh): # can we use the cached delta? delta = None if revinfo.cachedelta: cachebase, cachediff = revinfo.cachedelta #check if the diff still apply currentbase = cachebase while (currentbase != nullrev and currentbase != base and self.revlog.length(currentbase) == 0): currentbase = self.revlog.deltaparent(currentbase) if currentbase == base: delta = revinfo.cachedelta[1] if delta is None: delta = self._builddeltadiff(base, revinfo, fh) revlog = self.revlog header, data = revlog.compress(delta) deltalen = len(header) + len(data) chainbase = revlog.chainbase(base) offset = revlog.end(len(revlog) - 1) dist = deltalen + offset - revlog.start(chainbase) if revlog._generaldelta: deltabase = base else: deltabase = chainbase chainlen, compresseddeltalen = revlog._chaininfo(base) chainlen += 1 compresseddeltalen += deltalen revlog = self.revlog snapshotdepth = None if deltabase == nullrev: snapshotdepth = 0 elif revlog._sparserevlog and revlog.issnapshot(deltabase): # A delta chain should always be one full snapshot, # zero or more semi-snapshots, and zero or more deltas p1, p2 = revlog.rev(revinfo.p1), revlog.rev(revinfo.p2) if deltabase not in (p1, p2) and revlog.issnapshot(deltabase): snapshotdepth = len(revlog._deltachain(deltabase)[0]) return _deltainfo(dist, deltalen, (header, data), deltabase, chainbase, chainlen, compresseddeltalen, snapshotdepth) def _fullsnapshotinfo(self, fh, revinfo): curr = len(self.revlog) rawtext = self.buildtext(revinfo, fh) data = self.revlog.compress(rawtext) compresseddeltalen = deltalen = dist = len(data[1]) + len(data[0]) deltabase = chainbase = curr snapshotdepth = 0 chainlen = 1 return _deltainfo(dist, deltalen, data, deltabase, chainbase, chainlen, compresseddeltalen, snapshotdepth) def finddeltainfo(self, revinfo, fh): """Find an acceptable delta against a candidate revision revinfo: information about the revision (instance of _revisioninfo) fh: file handle to either the .i or the .d revlog file, depending on whether it is inlined or not Returns the first acceptable candidate revision, as ordered by _candidategroups If no suitable deltabase is found, we return delta info for a full snapshot. """ if not revinfo.textlen: return self._fullsnapshotinfo(fh, revinfo) # no delta for flag processor revision (see "candelta" for why) # not calling candelta since only one revision needs test, also to # avoid overhead fetching flags again. if revinfo.flags & REVIDX_RAWTEXT_CHANGING_FLAGS: return self._fullsnapshotinfo(fh, revinfo) cachedelta = revinfo.cachedelta p1 = revinfo.p1 p2 = revinfo.p2 revlog = self.revlog deltainfo = None p1r, p2r = revlog.rev(p1), revlog.rev(p2) groups = _candidategroups(self.revlog, revinfo.textlen, p1r, p2r, cachedelta) candidaterevs = next(groups) while candidaterevs is not None: nominateddeltas = [] if deltainfo is not None: # if we already found a good delta, # challenge it against refined candidates nominateddeltas.append(deltainfo) for candidaterev in candidaterevs: candidatedelta = self._builddeltainfo(revinfo, candidaterev, fh) if isgooddeltainfo(self.revlog, candidatedelta, revinfo): nominateddeltas.append(candidatedelta) if nominateddeltas: deltainfo = min(nominateddeltas, key=lambda x: x.deltalen) if deltainfo is not None: candidaterevs = groups.send(deltainfo.base) else: candidaterevs = next(groups) if deltainfo is None: deltainfo = self._fullsnapshotinfo(fh, revinfo) return deltainfo