Mercurial > hg-stable
view tests/test-ancestor.py @ 25774:4f8c20fe66f0
shelve: keep old backups if timestamp can't decide exact order of them
Before this patch, backups to be discarded are decided by steps below
at 'hg unshelve' or so:
1. list '(st_mtime, filename)' tuples of each backups up
2. sort list of these tuples, and
3. discard backups other than 'maxbackups' ones at the end of list
This doesn't work well in the case below:
- "sort by name" order differs from actual backup-ing order, and
- some of backups have same timestamp
For example, 'test-shelve.t' satisfies the former condition:
- 'default-01' < 'default-1' in "sort by name" order
- 'default-1' < 'default-01' in actual backup-ing order
Then, 'default-01' is discarded instead of 'default-1' unexpectedly,
if they have same timestamp. This failure appears occasionally,
because the most important condition "same timestamp" is timing
critical.
To avoid such unexpected discarding, this patch keeps old backups if
timestamp can't decide exact order of them.
Timestamp of the border backup (= the oldest one of recent
'maxbackups' ones) as 'bordermtime' is used to examine whether
timestamp can decide exact order of backups.
author | FUJIWARA Katsunori <foozy@lares.dti.ne.jp> |
---|---|
date | Mon, 13 Jul 2015 23:34:12 +0900 |
parents | f710644e1ce9 |
children | 4056fdf71aff |
line wrap: on
line source
from mercurial import ancestor, commands, hg, ui, util from mercurial.node import nullrev import binascii, getopt, math, os, random, sys, time def buildgraph(rng, nodes=100, rootprob=0.05, mergeprob=0.2, prevprob=0.7): '''nodes: total number of nodes in the graph rootprob: probability that a new node (not 0) will be a root mergeprob: probability that, excluding a root a node will be a merge prevprob: probability that p1 will be the previous node return value is a graph represented as an adjacency list. ''' graph = [None] * nodes for i in xrange(nodes): if i == 0 or rng.random() < rootprob: graph[i] = [nullrev] elif i == 1: graph[i] = [0] elif rng.random() < mergeprob: if i == 2 or rng.random() < prevprob: # p1 is prev p1 = i - 1 else: p1 = rng.randrange(i - 1) p2 = rng.choice(range(0, p1) + range(p1 + 1, i)) graph[i] = [p1, p2] elif rng.random() < prevprob: graph[i] = [i - 1] else: graph[i] = [rng.randrange(i - 1)] return graph def buildancestorsets(graph): ancs = [None] * len(graph) for i in xrange(len(graph)): ancs[i] = set([i]) if graph[i] == [nullrev]: continue for p in graph[i]: ancs[i].update(ancs[p]) return ancs class naiveincrementalmissingancestors(object): def __init__(self, ancs, bases): self.ancs = ancs self.bases = set(bases) def addbases(self, newbases): self.bases.update(newbases) def removeancestorsfrom(self, revs): for base in self.bases: if base != nullrev: revs.difference_update(self.ancs[base]) revs.discard(nullrev) def missingancestors(self, revs): res = set() for rev in revs: if rev != nullrev: res.update(self.ancs[rev]) for base in self.bases: if base != nullrev: res.difference_update(self.ancs[base]) return sorted(res) def test_missingancestors(seed, rng): # empirically observed to take around 1 second graphcount = 100 testcount = 10 inccount = 10 nerrs = [0] # the default mu and sigma give us a nice distribution of mostly # single-digit counts (including 0) with some higher ones def lognormrandom(mu, sigma): return int(math.floor(rng.lognormvariate(mu, sigma))) def samplerevs(nodes, mu=1.1, sigma=0.8): count = min(lognormrandom(mu, sigma), len(nodes)) return rng.sample(nodes, count) def err(seed, graph, bases, seq, output, expected): if nerrs[0] == 0: print >> sys.stderr, 'seed:', hex(seed)[:-1] if gerrs[0] == 0: print >> sys.stderr, 'graph:', graph print >> sys.stderr, '* bases:', bases print >> sys.stderr, '* seq: ', seq print >> sys.stderr, '* output: ', output print >> sys.stderr, '* expected:', expected nerrs[0] += 1 gerrs[0] += 1 for g in xrange(graphcount): graph = buildgraph(rng) ancs = buildancestorsets(graph) gerrs = [0] for _ in xrange(testcount): # start from nullrev to include it as a possibility graphnodes = range(nullrev, len(graph)) bases = samplerevs(graphnodes) # fast algorithm inc = ancestor.incrementalmissingancestors(graph.__getitem__, bases) # reference slow algorithm naiveinc = naiveincrementalmissingancestors(ancs, bases) seq = [] revs = [] for _ in xrange(inccount): if rng.random() < 0.2: newbases = samplerevs(graphnodes) seq.append(('addbases', newbases)) inc.addbases(newbases) naiveinc.addbases(newbases) if rng.random() < 0.4: # larger set so that there are more revs to remove from revs = samplerevs(graphnodes, mu=1.5) seq.append(('removeancestorsfrom', revs)) hrevs = set(revs) rrevs = set(revs) inc.removeancestorsfrom(hrevs) naiveinc.removeancestorsfrom(rrevs) if hrevs != rrevs: err(seed, graph, bases, seq, sorted(hrevs), sorted(rrevs)) else: revs = samplerevs(graphnodes) seq.append(('missingancestors', revs)) h = inc.missingancestors(revs) r = naiveinc.missingancestors(revs) if h != r: err(seed, graph, bases, seq, h, r) # graph is a dict of child->parent adjacency lists for this graph: # o 13 # | # | o 12 # | | # | | o 11 # | | |\ # | | | | o 10 # | | | | | # | o---+ | 9 # | | | | | # o | | | | 8 # / / / / # | | o | 7 # | | | | # o---+ | 6 # / / / # | | o 5 # | |/ # | o 4 # | | # o | 3 # | | # | o 2 # |/ # o 1 # | # o 0 graph = {0: [-1], 1: [0], 2: [1], 3: [1], 4: [2], 5: [4], 6: [4], 7: [4], 8: [-1], 9: [6, 7], 10: [5], 11: [3, 7], 12: [9], 13: [8]} def genlazyancestors(revs, stoprev=0, inclusive=False): print ("%% lazy ancestor set for %s, stoprev = %s, inclusive = %s" % (revs, stoprev, inclusive)) return ancestor.lazyancestors(graph.get, revs, stoprev=stoprev, inclusive=inclusive) def printlazyancestors(s, l): print 'membership: %r' % [n for n in l if n in s] print 'iteration: %r' % list(s) def test_lazyancestors(): # Empty revs s = genlazyancestors([]) printlazyancestors(s, [3, 0, -1]) # Standard example s = genlazyancestors([11, 13]) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # Standard with ancestry in the initial set (1 is ancestor of 3) s = genlazyancestors([1, 3]) printlazyancestors(s, [1, -1, 0]) # Including revs s = genlazyancestors([11, 13], inclusive=True) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # Test with stoprev s = genlazyancestors([11, 13], stoprev=6) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) s = genlazyancestors([11, 13], stoprev=6, inclusive=True) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # The C gca algorithm requires a real repo. These are textual descriptions of # DAGs that have been known to be problematic. dagtests = [ '+2*2*2/*3/2', '+3*3/*2*2/*4*4/*4/2*4/2*2', ] def test_gca(): u = ui.ui() for i, dag in enumerate(dagtests): repo = hg.repository(u, 'gca%d' % i, create=1) cl = repo.changelog if not util.safehasattr(cl.index, 'ancestors'): # C version not available return commands.debugbuilddag(u, repo, dag) # Compare the results of the Python and C versions. This does not # include choosing a winner when more than one gca exists -- we make # sure both return exactly the same set of gcas. for a in cl: for b in cl: cgcas = sorted(cl.index.ancestors(a, b)) pygcas = sorted(ancestor.ancestors(cl.parentrevs, a, b)) if cgcas != pygcas: print "test_gca: for dag %s, gcas for %d, %d:" % (dag, a, b) print " C returned: %s" % cgcas print " Python returned: %s" % pygcas def main(): seed = None opts, args = getopt.getopt(sys.argv[1:], 's:', ['seed=']) for o, a in opts: if o in ('-s', '--seed'): seed = long(a, base=0) # accepts base 10 or 16 strings if seed is None: try: seed = long(binascii.hexlify(os.urandom(16)), 16) except AttributeError: seed = long(time.time() * 1000) rng = random.Random(seed) test_missingancestors(seed, rng) test_lazyancestors() test_gca() if __name__ == '__main__': main()