Mercurial > hg-stable
view mercurial/smartset.py @ 31864:70d163b86316
upgrade: extract code in its own module
Given about 2/3 or 'mercurial.repair' is now about repository upgrade, I think
it is fair to move it into its own module.
An expected benefit is the ability to drop the 'upgrade' prefix of many
functions. This will be done in coming changesets.
author | Pierre-Yves David <pierre-yves.david@ens-lyon.org> |
---|---|
date | Fri, 07 Apr 2017 18:53:17 +0200 |
parents | 413b44003462 |
children | 2cfdf5241096 |
line wrap: on
line source
# smartset.py - data structure for revision set # # Copyright 2010 Matt Mackall <mpm@selenic.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import from . import ( util, ) def _formatsetrepr(r): """Format an optional printable representation of a set ======== ================================= type(r) example ======== ================================= tuple ('<not %r>', other) str '<branch closed>' callable lambda: '<branch %r>' % sorted(b) object other ======== ================================= """ if r is None: return '' elif isinstance(r, tuple): return r[0] % r[1:] elif isinstance(r, str): return r elif callable(r): return r() else: return repr(r) class abstractsmartset(object): def __nonzero__(self): """True if the smartset is not empty""" raise NotImplementedError() __bool__ = __nonzero__ def __contains__(self, rev): """provide fast membership testing""" raise NotImplementedError() def __iter__(self): """iterate the set in the order it is supposed to be iterated""" raise NotImplementedError() # Attributes containing a function to perform a fast iteration in a given # direction. A smartset can have none, one, or both defined. # # Default value is None instead of a function returning None to avoid # initializing an iterator just for testing if a fast method exists. fastasc = None fastdesc = None def isascending(self): """True if the set will iterate in ascending order""" raise NotImplementedError() def isdescending(self): """True if the set will iterate in descending order""" raise NotImplementedError() def istopo(self): """True if the set will iterate in topographical order""" raise NotImplementedError() def min(self): """return the minimum element in the set""" if self.fastasc is None: v = min(self) else: for v in self.fastasc(): break else: raise ValueError('arg is an empty sequence') self.min = lambda: v return v def max(self): """return the maximum element in the set""" if self.fastdesc is None: return max(self) else: for v in self.fastdesc(): break else: raise ValueError('arg is an empty sequence') self.max = lambda: v return v def first(self): """return the first element in the set (user iteration perspective) Return None if the set is empty""" raise NotImplementedError() def last(self): """return the last element in the set (user iteration perspective) Return None if the set is empty""" raise NotImplementedError() def __len__(self): """return the length of the smartsets This can be expensive on smartset that could be lazy otherwise.""" raise NotImplementedError() def reverse(self): """reverse the expected iteration order""" raise NotImplementedError() def sort(self, reverse=True): """get the set to iterate in an ascending or descending order""" raise NotImplementedError() def __and__(self, other): """Returns a new object with the intersection of the two collections. This is part of the mandatory API for smartset.""" if isinstance(other, fullreposet): return self return self.filter(other.__contains__, condrepr=other, cache=False) def __add__(self, other): """Returns a new object with the union of the two collections. This is part of the mandatory API for smartset.""" return addset(self, other) def __sub__(self, other): """Returns a new object with the substraction of the two collections. This is part of the mandatory API for smartset.""" c = other.__contains__ return self.filter(lambda r: not c(r), condrepr=('<not %r>', other), cache=False) def filter(self, condition, condrepr=None, cache=True): """Returns this smartset filtered by condition as a new smartset. `condition` is a callable which takes a revision number and returns a boolean. Optional `condrepr` provides a printable representation of the given `condition`. This is part of the mandatory API for smartset.""" # builtin cannot be cached. but do not needs to if cache and util.safehasattr(condition, 'func_code'): condition = util.cachefunc(condition) return filteredset(self, condition, condrepr) class baseset(abstractsmartset): """Basic data structure that represents a revset and contains the basic operation that it should be able to perform. Every method in this class should be implemented by any smartset class. This class could be constructed by an (unordered) set, or an (ordered) list-like object. If a set is provided, it'll be sorted lazily. >>> x = [4, 0, 7, 6] >>> y = [5, 6, 7, 3] Construct by a set: >>> xs = baseset(set(x)) >>> ys = baseset(set(y)) >>> [list(i) for i in [xs + ys, xs & ys, xs - ys]] [[0, 4, 6, 7, 3, 5], [6, 7], [0, 4]] >>> [type(i).__name__ for i in [xs + ys, xs & ys, xs - ys]] ['addset', 'baseset', 'baseset'] Construct by a list-like: >>> xs = baseset(x) >>> ys = baseset(i for i in y) >>> [list(i) for i in [xs + ys, xs & ys, xs - ys]] [[4, 0, 7, 6, 5, 3], [7, 6], [4, 0]] >>> [type(i).__name__ for i in [xs + ys, xs & ys, xs - ys]] ['addset', 'filteredset', 'filteredset'] Populate "_set" fields in the lists so set optimization may be used: >>> [1 in xs, 3 in ys] [False, True] Without sort(), results won't be changed: >>> [list(i) for i in [xs + ys, xs & ys, xs - ys]] [[4, 0, 7, 6, 5, 3], [7, 6], [4, 0]] >>> [type(i).__name__ for i in [xs + ys, xs & ys, xs - ys]] ['addset', 'filteredset', 'filteredset'] With sort(), set optimization could be used: >>> xs.sort(reverse=True) >>> [list(i) for i in [xs + ys, xs & ys, xs - ys]] [[7, 6, 4, 0, 5, 3], [7, 6], [4, 0]] >>> [type(i).__name__ for i in [xs + ys, xs & ys, xs - ys]] ['addset', 'baseset', 'baseset'] >>> ys.sort() >>> [list(i) for i in [xs + ys, xs & ys, xs - ys]] [[7, 6, 4, 0, 3, 5], [7, 6], [4, 0]] >>> [type(i).__name__ for i in [xs + ys, xs & ys, xs - ys]] ['addset', 'baseset', 'baseset'] istopo is preserved across set operations >>> xs = baseset(set(x), istopo=True) >>> rs = xs & ys >>> type(rs).__name__ 'baseset' >>> rs._istopo True """ def __init__(self, data=(), datarepr=None, istopo=False): """ datarepr: a tuple of (format, obj, ...), a function or an object that provides a printable representation of the given data. """ self._ascending = None self._istopo = istopo if isinstance(data, set): # converting set to list has a cost, do it lazily self._set = data # set has no order we pick one for stability purpose self._ascending = True else: if not isinstance(data, list): data = list(data) self._list = data self._datarepr = datarepr @util.propertycache def _set(self): return set(self._list) @util.propertycache def _asclist(self): asclist = self._list[:] asclist.sort() return asclist @util.propertycache def _list(self): # _list is only lazily constructed if we have _set assert '_set' in self.__dict__ return list(self._set) def __iter__(self): if self._ascending is None: return iter(self._list) elif self._ascending: return iter(self._asclist) else: return reversed(self._asclist) def fastasc(self): return iter(self._asclist) def fastdesc(self): return reversed(self._asclist) @util.propertycache def __contains__(self): return self._set.__contains__ def __nonzero__(self): return bool(len(self)) __bool__ = __nonzero__ def sort(self, reverse=False): self._ascending = not bool(reverse) self._istopo = False def reverse(self): if self._ascending is None: self._list.reverse() else: self._ascending = not self._ascending self._istopo = False def __len__(self): if '_list' in self.__dict__: return len(self._list) else: return len(self._set) def isascending(self): """Returns True if the collection is ascending order, False if not. This is part of the mandatory API for smartset.""" if len(self) <= 1: return True return self._ascending is not None and self._ascending def isdescending(self): """Returns True if the collection is descending order, False if not. This is part of the mandatory API for smartset.""" if len(self) <= 1: return True return self._ascending is not None and not self._ascending def istopo(self): """Is the collection is in topographical order or not. This is part of the mandatory API for smartset.""" if len(self) <= 1: return True return self._istopo def first(self): if self: if self._ascending is None: return self._list[0] elif self._ascending: return self._asclist[0] else: return self._asclist[-1] return None def last(self): if self: if self._ascending is None: return self._list[-1] elif self._ascending: return self._asclist[-1] else: return self._asclist[0] return None def _fastsetop(self, other, op): # try to use native set operations as fast paths if (type(other) is baseset and '_set' in other.__dict__ and '_set' in self.__dict__ and self._ascending is not None): s = baseset(data=getattr(self._set, op)(other._set), istopo=self._istopo) s._ascending = self._ascending else: s = getattr(super(baseset, self), op)(other) return s def __and__(self, other): return self._fastsetop(other, '__and__') def __sub__(self, other): return self._fastsetop(other, '__sub__') def __repr__(self): d = {None: '', False: '-', True: '+'}[self._ascending] s = _formatsetrepr(self._datarepr) if not s: l = self._list # if _list has been built from a set, it might have a different # order from one python implementation to another. # We fallback to the sorted version for a stable output. if self._ascending is not None: l = self._asclist s = repr(l) return '<%s%s %s>' % (type(self).__name__, d, s) class filteredset(abstractsmartset): """Duck type for baseset class which iterates lazily over the revisions in the subset and contains a function which tests for membership in the revset """ def __init__(self, subset, condition=lambda x: True, condrepr=None): """ condition: a function that decide whether a revision in the subset belongs to the revset or not. condrepr: a tuple of (format, obj, ...), a function or an object that provides a printable representation of the given condition. """ self._subset = subset self._condition = condition self._condrepr = condrepr def __contains__(self, x): return x in self._subset and self._condition(x) def __iter__(self): return self._iterfilter(self._subset) def _iterfilter(self, it): cond = self._condition for x in it: if cond(x): yield x @property def fastasc(self): it = self._subset.fastasc if it is None: return None return lambda: self._iterfilter(it()) @property def fastdesc(self): it = self._subset.fastdesc if it is None: return None return lambda: self._iterfilter(it()) def __nonzero__(self): fast = None candidates = [self.fastasc if self.isascending() else None, self.fastdesc if self.isdescending() else None, self.fastasc, self.fastdesc] for candidate in candidates: if candidate is not None: fast = candidate break if fast is not None: it = fast() else: it = self for r in it: return True return False __bool__ = __nonzero__ def __len__(self): # Basic implementation to be changed in future patches. # until this gets improved, we use generator expression # here, since list comprehensions are free to call __len__ again # causing infinite recursion l = baseset(r for r in self) return len(l) def sort(self, reverse=False): self._subset.sort(reverse=reverse) def reverse(self): self._subset.reverse() def isascending(self): return self._subset.isascending() def isdescending(self): return self._subset.isdescending() def istopo(self): return self._subset.istopo() def first(self): for x in self: return x return None def last(self): it = None if self.isascending(): it = self.fastdesc elif self.isdescending(): it = self.fastasc if it is not None: for x in it(): return x return None #empty case else: x = None for x in self: pass return x def __repr__(self): xs = [repr(self._subset)] s = _formatsetrepr(self._condrepr) if s: xs.append(s) return '<%s %s>' % (type(self).__name__, ', '.join(xs)) def _iterordered(ascending, iter1, iter2): """produce an ordered iteration from two iterators with the same order The ascending is used to indicated the iteration direction. """ choice = max if ascending: choice = min val1 = None val2 = None try: # Consume both iterators in an ordered way until one is empty while True: if val1 is None: val1 = next(iter1) if val2 is None: val2 = next(iter2) n = choice(val1, val2) yield n if val1 == n: val1 = None if val2 == n: val2 = None except StopIteration: # Flush any remaining values and consume the other one it = iter2 if val1 is not None: yield val1 it = iter1 elif val2 is not None: # might have been equality and both are empty yield val2 for val in it: yield val class addset(abstractsmartset): """Represent the addition of two sets Wrapper structure for lazily adding two structures without losing much performance on the __contains__ method If the ascending attribute is set, that means the two structures are ordered in either an ascending or descending way. Therefore, we can add them maintaining the order by iterating over both at the same time >>> xs = baseset([0, 3, 2]) >>> ys = baseset([5, 2, 4]) >>> rs = addset(xs, ys) >>> bool(rs), 0 in rs, 1 in rs, 5 in rs, rs.first(), rs.last() (True, True, False, True, 0, 4) >>> rs = addset(xs, baseset([])) >>> bool(rs), 0 in rs, 1 in rs, rs.first(), rs.last() (True, True, False, 0, 2) >>> rs = addset(baseset([]), baseset([])) >>> bool(rs), 0 in rs, rs.first(), rs.last() (False, False, None, None) iterate unsorted: >>> rs = addset(xs, ys) >>> # (use generator because pypy could call len()) >>> list(x for x in rs) # without _genlist [0, 3, 2, 5, 4] >>> assert not rs._genlist >>> len(rs) 5 >>> [x for x in rs] # with _genlist [0, 3, 2, 5, 4] >>> assert rs._genlist iterate ascending: >>> rs = addset(xs, ys, ascending=True) >>> # (use generator because pypy could call len()) >>> list(x for x in rs), list(x for x in rs.fastasc()) # without _asclist ([0, 2, 3, 4, 5], [0, 2, 3, 4, 5]) >>> assert not rs._asclist >>> len(rs) 5 >>> [x for x in rs], [x for x in rs.fastasc()] ([0, 2, 3, 4, 5], [0, 2, 3, 4, 5]) >>> assert rs._asclist iterate descending: >>> rs = addset(xs, ys, ascending=False) >>> # (use generator because pypy could call len()) >>> list(x for x in rs), list(x for x in rs.fastdesc()) # without _asclist ([5, 4, 3, 2, 0], [5, 4, 3, 2, 0]) >>> assert not rs._asclist >>> len(rs) 5 >>> [x for x in rs], [x for x in rs.fastdesc()] ([5, 4, 3, 2, 0], [5, 4, 3, 2, 0]) >>> assert rs._asclist iterate ascending without fastasc: >>> rs = addset(xs, generatorset(ys), ascending=True) >>> assert rs.fastasc is None >>> [x for x in rs] [0, 2, 3, 4, 5] iterate descending without fastdesc: >>> rs = addset(generatorset(xs), ys, ascending=False) >>> assert rs.fastdesc is None >>> [x for x in rs] [5, 4, 3, 2, 0] """ def __init__(self, revs1, revs2, ascending=None): self._r1 = revs1 self._r2 = revs2 self._iter = None self._ascending = ascending self._genlist = None self._asclist = None def __len__(self): return len(self._list) def __nonzero__(self): return bool(self._r1) or bool(self._r2) __bool__ = __nonzero__ @util.propertycache def _list(self): if not self._genlist: self._genlist = baseset(iter(self)) return self._genlist def __iter__(self): """Iterate over both collections without repeating elements If the ascending attribute is not set, iterate over the first one and then over the second one checking for membership on the first one so we dont yield any duplicates. If the ascending attribute is set, iterate over both collections at the same time, yielding only one value at a time in the given order. """ if self._ascending is None: if self._genlist: return iter(self._genlist) def arbitraryordergen(): for r in self._r1: yield r inr1 = self._r1.__contains__ for r in self._r2: if not inr1(r): yield r return arbitraryordergen() # try to use our own fast iterator if it exists self._trysetasclist() if self._ascending: attr = 'fastasc' else: attr = 'fastdesc' it = getattr(self, attr) if it is not None: return it() # maybe half of the component supports fast # get iterator for _r1 iter1 = getattr(self._r1, attr) if iter1 is None: # let's avoid side effect (not sure it matters) iter1 = iter(sorted(self._r1, reverse=not self._ascending)) else: iter1 = iter1() # get iterator for _r2 iter2 = getattr(self._r2, attr) if iter2 is None: # let's avoid side effect (not sure it matters) iter2 = iter(sorted(self._r2, reverse=not self._ascending)) else: iter2 = iter2() return _iterordered(self._ascending, iter1, iter2) def _trysetasclist(self): """populate the _asclist attribute if possible and necessary""" if self._genlist is not None and self._asclist is None: self._asclist = sorted(self._genlist) @property def fastasc(self): self._trysetasclist() if self._asclist is not None: return self._asclist.__iter__ iter1 = self._r1.fastasc iter2 = self._r2.fastasc if None in (iter1, iter2): return None return lambda: _iterordered(True, iter1(), iter2()) @property def fastdesc(self): self._trysetasclist() if self._asclist is not None: return self._asclist.__reversed__ iter1 = self._r1.fastdesc iter2 = self._r2.fastdesc if None in (iter1, iter2): return None return lambda: _iterordered(False, iter1(), iter2()) def __contains__(self, x): return x in self._r1 or x in self._r2 def sort(self, reverse=False): """Sort the added set For this we use the cached list with all the generated values and if we know they are ascending or descending we can sort them in a smart way. """ self._ascending = not reverse def isascending(self): return self._ascending is not None and self._ascending def isdescending(self): return self._ascending is not None and not self._ascending def istopo(self): # not worth the trouble asserting if the two sets combined are still # in topographical order. Use the sort() predicate to explicitly sort # again instead. return False def reverse(self): if self._ascending is None: self._list.reverse() else: self._ascending = not self._ascending def first(self): for x in self: return x return None def last(self): self.reverse() val = self.first() self.reverse() return val def __repr__(self): d = {None: '', False: '-', True: '+'}[self._ascending] return '<%s%s %r, %r>' % (type(self).__name__, d, self._r1, self._r2) class generatorset(abstractsmartset): """Wrap a generator for lazy iteration Wrapper structure for generators that provides lazy membership and can be iterated more than once. When asked for membership it generates values until either it finds the requested one or has gone through all the elements in the generator """ def __init__(self, gen, iterasc=None): """ gen: a generator producing the values for the generatorset. """ self._gen = gen self._asclist = None self._cache = {} self._genlist = [] self._finished = False self._ascending = True if iterasc is not None: if iterasc: self.fastasc = self._iterator self.__contains__ = self._asccontains else: self.fastdesc = self._iterator self.__contains__ = self._desccontains def __nonzero__(self): # Do not use 'for r in self' because it will enforce the iteration # order (default ascending), possibly unrolling a whole descending # iterator. if self._genlist: return True for r in self._consumegen(): return True return False __bool__ = __nonzero__ def __contains__(self, x): if x in self._cache: return self._cache[x] # Use new values only, as existing values would be cached. for l in self._consumegen(): if l == x: return True self._cache[x] = False return False def _asccontains(self, x): """version of contains optimised for ascending generator""" if x in self._cache: return self._cache[x] # Use new values only, as existing values would be cached. for l in self._consumegen(): if l == x: return True if l > x: break self._cache[x] = False return False def _desccontains(self, x): """version of contains optimised for descending generator""" if x in self._cache: return self._cache[x] # Use new values only, as existing values would be cached. for l in self._consumegen(): if l == x: return True if l < x: break self._cache[x] = False return False def __iter__(self): if self._ascending: it = self.fastasc else: it = self.fastdesc if it is not None: return it() # we need to consume the iterator for x in self._consumegen(): pass # recall the same code return iter(self) def _iterator(self): if self._finished: return iter(self._genlist) # We have to use this complex iteration strategy to allow multiple # iterations at the same time. We need to be able to catch revision # removed from _consumegen and added to genlist in another instance. # # Getting rid of it would provide an about 15% speed up on this # iteration. genlist = self._genlist nextgen = self._consumegen() _len, _next = len, next # cache global lookup def gen(): i = 0 while True: if i < _len(genlist): yield genlist[i] else: yield _next(nextgen) i += 1 return gen() def _consumegen(self): cache = self._cache genlist = self._genlist.append for item in self._gen: cache[item] = True genlist(item) yield item if not self._finished: self._finished = True asc = self._genlist[:] asc.sort() self._asclist = asc self.fastasc = asc.__iter__ self.fastdesc = asc.__reversed__ def __len__(self): for x in self._consumegen(): pass return len(self._genlist) def sort(self, reverse=False): self._ascending = not reverse def reverse(self): self._ascending = not self._ascending def isascending(self): return self._ascending def isdescending(self): return not self._ascending def istopo(self): # not worth the trouble asserting if the two sets combined are still # in topographical order. Use the sort() predicate to explicitly sort # again instead. return False def first(self): if self._ascending: it = self.fastasc else: it = self.fastdesc if it is None: # we need to consume all and try again for x in self._consumegen(): pass return self.first() return next(it(), None) def last(self): if self._ascending: it = self.fastdesc else: it = self.fastasc if it is None: # we need to consume all and try again for x in self._consumegen(): pass return self.first() return next(it(), None) def __repr__(self): d = {False: '-', True: '+'}[self._ascending] return '<%s%s>' % (type(self).__name__, d) class spanset(abstractsmartset): """Duck type for baseset class which represents a range of revisions and can work lazily and without having all the range in memory Note that spanset(x, y) behave almost like xrange(x, y) except for two notable points: - when x < y it will be automatically descending, - revision filtered with this repoview will be skipped. """ def __init__(self, repo, start=0, end=None): """ start: first revision included the set (default to 0) end: first revision excluded (last+1) (default to len(repo) Spanset will be descending if `end` < `start`. """ if end is None: end = len(repo) self._ascending = start <= end if not self._ascending: start, end = end + 1, start +1 self._start = start self._end = end self._hiddenrevs = repo.changelog.filteredrevs def sort(self, reverse=False): self._ascending = not reverse def reverse(self): self._ascending = not self._ascending def istopo(self): # not worth the trouble asserting if the two sets combined are still # in topographical order. Use the sort() predicate to explicitly sort # again instead. return False def _iterfilter(self, iterrange): s = self._hiddenrevs for r in iterrange: if r not in s: yield r def __iter__(self): if self._ascending: return self.fastasc() else: return self.fastdesc() def fastasc(self): iterrange = xrange(self._start, self._end) if self._hiddenrevs: return self._iterfilter(iterrange) return iter(iterrange) def fastdesc(self): iterrange = xrange(self._end - 1, self._start - 1, -1) if self._hiddenrevs: return self._iterfilter(iterrange) return iter(iterrange) def __contains__(self, rev): hidden = self._hiddenrevs return ((self._start <= rev < self._end) and not (hidden and rev in hidden)) def __nonzero__(self): for r in self: return True return False __bool__ = __nonzero__ def __len__(self): if not self._hiddenrevs: return abs(self._end - self._start) else: count = 0 start = self._start end = self._end for rev in self._hiddenrevs: if (end < rev <= start) or (start <= rev < end): count += 1 return abs(self._end - self._start) - count def isascending(self): return self._ascending def isdescending(self): return not self._ascending def first(self): if self._ascending: it = self.fastasc else: it = self.fastdesc for x in it(): return x return None def last(self): if self._ascending: it = self.fastdesc else: it = self.fastasc for x in it(): return x return None def __repr__(self): d = {False: '-', True: '+'}[self._ascending] return '<%s%s %d:%d>' % (type(self).__name__, d, self._start, self._end - 1) class fullreposet(spanset): """a set containing all revisions in the repo This class exists to host special optimization and magic to handle virtual revisions such as "null". """ def __init__(self, repo): super(fullreposet, self).__init__(repo) def __and__(self, other): """As self contains the whole repo, all of the other set should also be in self. Therefore `self & other = other`. This boldly assumes the other contains valid revs only. """ # other not a smartset, make is so if not util.safehasattr(other, 'isascending'): # filter out hidden revision # (this boldly assumes all smartset are pure) # # `other` was used with "&", let's assume this is a set like # object. other = baseset(other - self._hiddenrevs) other.sort(reverse=self.isdescending()) return other def prettyformat(revs): lines = [] rs = repr(revs) p = 0 while p < len(rs): q = rs.find('<', p + 1) if q < 0: q = len(rs) l = rs.count('<', 0, p) - rs.count('>', 0, p) assert l >= 0 lines.append((l, rs[p:q].rstrip())) p = q return '\n'.join(' ' * l + s for l, s in lines)