Mercurial > hg-stable
view mercurial/revlog.py @ 24237:9ad02823dc5b
templatekw: convert list of key/value pairs to sortdict
These sortdict objects will be passed to _hybrid later, which will allow
us to handle them by "ifcontains()" and "get()" as expected.
author | Yuya Nishihara <yuya@tcha.org> |
---|---|
date | Sun, 08 Mar 2015 14:17:35 +0900 |
parents | eb2d41c6ec37 |
children | 4bfe9f2d9761 |
line wrap: on
line source
# revlog.py - storage back-end for mercurial # # Copyright 2005-2007 Matt Mackall <mpm@selenic.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. """Storage back-end for Mercurial. This provides efficient delta storage with O(1) retrieve and append and O(changes) merge between branches. """ # import stuff from node for others to import from revlog from node import bin, hex, nullid, nullrev from i18n import _ import ancestor, mdiff, parsers, error, util, templatefilters import struct, zlib, errno _pack = struct.pack _unpack = struct.unpack _compress = zlib.compress _decompress = zlib.decompress _sha = util.sha1 # revlog header flags REVLOGV0 = 0 REVLOGNG = 1 REVLOGNGINLINEDATA = (1 << 16) REVLOGGENERALDELTA = (1 << 17) REVLOG_DEFAULT_FLAGS = REVLOGNGINLINEDATA REVLOG_DEFAULT_FORMAT = REVLOGNG REVLOG_DEFAULT_VERSION = REVLOG_DEFAULT_FORMAT | REVLOG_DEFAULT_FLAGS REVLOGNG_FLAGS = REVLOGNGINLINEDATA | REVLOGGENERALDELTA # revlog index flags REVIDX_ISCENSORED = (1 << 15) # revision has censor metadata, must be verified REVIDX_DEFAULT_FLAGS = 0 REVIDX_KNOWN_FLAGS = REVIDX_ISCENSORED # max size of revlog with inline data _maxinline = 131072 _chunksize = 1048576 RevlogError = error.RevlogError LookupError = error.LookupError CensoredNodeError = error.CensoredNodeError def getoffset(q): return int(q >> 16) def gettype(q): return int(q & 0xFFFF) def offset_type(offset, type): return long(long(offset) << 16 | type) _nullhash = _sha(nullid) def hash(text, p1, p2): """generate a hash from the given text and its parent hashes This hash combines both the current file contents and its history in a manner that makes it easy to distinguish nodes with the same content in the revision graph. """ # As of now, if one of the parent node is null, p2 is null if p2 == nullid: # deep copy of a hash is faster than creating one s = _nullhash.copy() s.update(p1) else: # none of the parent nodes are nullid l = [p1, p2] l.sort() s = _sha(l[0]) s.update(l[1]) s.update(text) return s.digest() def decompress(bin): """ decompress the given input """ if not bin: return bin t = bin[0] if t == '\0': return bin if t == 'x': try: return _decompress(bin) except zlib.error, e: raise RevlogError(_("revlog decompress error: %s") % str(e)) if t == 'u': return bin[1:] raise RevlogError(_("unknown compression type %r") % t) # index v0: # 4 bytes: offset # 4 bytes: compressed length # 4 bytes: base rev # 4 bytes: link rev # 32 bytes: parent 1 nodeid # 32 bytes: parent 2 nodeid # 32 bytes: nodeid indexformatv0 = ">4l20s20s20s" v0shaoffset = 56 class revlogoldio(object): def __init__(self): self.size = struct.calcsize(indexformatv0) def parseindex(self, data, inline): s = self.size index = [] nodemap = {nullid: nullrev} n = off = 0 l = len(data) while off + s <= l: cur = data[off:off + s] off += s e = _unpack(indexformatv0, cur) # transform to revlogv1 format e2 = (offset_type(e[0], 0), e[1], -1, e[2], e[3], nodemap.get(e[4], nullrev), nodemap.get(e[5], nullrev), e[6]) index.append(e2) nodemap[e[6]] = n n += 1 # add the magic null revision at -1 index.append((0, 0, 0, -1, -1, -1, -1, nullid)) return index, nodemap, None def packentry(self, entry, node, version, rev): if gettype(entry[0]): raise RevlogError(_("index entry flags need RevlogNG")) e2 = (getoffset(entry[0]), entry[1], entry[3], entry[4], node(entry[5]), node(entry[6]), entry[7]) return _pack(indexformatv0, *e2) # index ng: # 6 bytes: offset # 2 bytes: flags # 4 bytes: compressed length # 4 bytes: uncompressed length # 4 bytes: base rev # 4 bytes: link rev # 4 bytes: parent 1 rev # 4 bytes: parent 2 rev # 32 bytes: nodeid indexformatng = ">Qiiiiii20s12x" ngshaoffset = 32 versionformat = ">I" class revlogio(object): def __init__(self): self.size = struct.calcsize(indexformatng) def parseindex(self, data, inline): # call the C implementation to parse the index data index, cache = parsers.parse_index2(data, inline) return index, getattr(index, 'nodemap', None), cache def packentry(self, entry, node, version, rev): p = _pack(indexformatng, *entry) if rev == 0: p = _pack(versionformat, version) + p[4:] return p class revlog(object): """ the underlying revision storage object A revlog consists of two parts, an index and the revision data. The index is a file with a fixed record size containing information on each revision, including its nodeid (hash), the nodeids of its parents, the position and offset of its data within the data file, and the revision it's based on. Finally, each entry contains a linkrev entry that can serve as a pointer to external data. The revision data itself is a linear collection of data chunks. Each chunk represents a revision and is usually represented as a delta against the previous chunk. To bound lookup time, runs of deltas are limited to about 2 times the length of the original version data. This makes retrieval of a version proportional to its size, or O(1) relative to the number of revisions. Both pieces of the revlog are written to in an append-only fashion, which means we never need to rewrite a file to insert or remove data, and can use some simple techniques to avoid the need for locking while reading. """ def __init__(self, opener, indexfile): """ create a revlog object opener is a function that abstracts the file opening operation and can be used to implement COW semantics or the like. """ self.indexfile = indexfile self.datafile = indexfile[:-2] + ".d" self.opener = opener self._cache = None self._basecache = None self._chunkcache = (0, '') self._chunkcachesize = 65536 self._maxchainlen = None self.index = [] self._pcache = {} self._nodecache = {nullid: nullrev} self._nodepos = None v = REVLOG_DEFAULT_VERSION opts = getattr(opener, 'options', None) if opts is not None: if 'revlogv1' in opts: if 'generaldelta' in opts: v |= REVLOGGENERALDELTA else: v = 0 if 'chunkcachesize' in opts: self._chunkcachesize = opts['chunkcachesize'] if 'maxchainlen' in opts: self._maxchainlen = opts['maxchainlen'] if self._chunkcachesize <= 0: raise RevlogError(_('revlog chunk cache size %r is not greater ' 'than 0') % self._chunkcachesize) elif self._chunkcachesize & (self._chunkcachesize - 1): raise RevlogError(_('revlog chunk cache size %r is not a power ' 'of 2') % self._chunkcachesize) i = '' self._initempty = True try: f = self.opener(self.indexfile) i = f.read() f.close() if len(i) > 0: v = struct.unpack(versionformat, i[:4])[0] self._initempty = False except IOError, inst: if inst.errno != errno.ENOENT: raise self.version = v self._inline = v & REVLOGNGINLINEDATA self._generaldelta = v & REVLOGGENERALDELTA flags = v & ~0xFFFF fmt = v & 0xFFFF if fmt == REVLOGV0 and flags: raise RevlogError(_("index %s unknown flags %#04x for format v0") % (self.indexfile, flags >> 16)) elif fmt == REVLOGNG and flags & ~REVLOGNG_FLAGS: raise RevlogError(_("index %s unknown flags %#04x for revlogng") % (self.indexfile, flags >> 16)) elif fmt > REVLOGNG: raise RevlogError(_("index %s unknown format %d") % (self.indexfile, fmt)) self._io = revlogio() if self.version == REVLOGV0: self._io = revlogoldio() try: d = self._io.parseindex(i, self._inline) except (ValueError, IndexError): raise RevlogError(_("index %s is corrupted") % (self.indexfile)) self.index, nodemap, self._chunkcache = d if nodemap is not None: self.nodemap = self._nodecache = nodemap if not self._chunkcache: self._chunkclear() # revnum -> (chain-length, sum-delta-length) self._chaininfocache = {} def tip(self): return self.node(len(self.index) - 2) def __contains__(self, rev): return 0 <= rev < len(self) def __len__(self): return len(self.index) - 1 def __iter__(self): return iter(xrange(len(self))) def revs(self, start=0, stop=None): """iterate over all rev in this revlog (from start to stop)""" step = 1 if stop is not None: if start > stop: step = -1 stop += step else: stop = len(self) return xrange(start, stop, step) @util.propertycache def nodemap(self): self.rev(self.node(0)) return self._nodecache def hasnode(self, node): try: self.rev(node) return True except KeyError: return False def clearcaches(self): try: self._nodecache.clearcaches() except AttributeError: self._nodecache = {nullid: nullrev} self._nodepos = None def rev(self, node): try: return self._nodecache[node] except TypeError: raise except RevlogError: # parsers.c radix tree lookup failed raise LookupError(node, self.indexfile, _('no node')) except KeyError: # pure python cache lookup failed n = self._nodecache i = self.index p = self._nodepos if p is None: p = len(i) - 2 for r in xrange(p, -1, -1): v = i[r][7] n[v] = r if v == node: self._nodepos = r - 1 return r raise LookupError(node, self.indexfile, _('no node')) def node(self, rev): return self.index[rev][7] def linkrev(self, rev): return self.index[rev][4] def parents(self, node): i = self.index d = i[self.rev(node)] return i[d[5]][7], i[d[6]][7] # map revisions to nodes inline def parentrevs(self, rev): return self.index[rev][5:7] def start(self, rev): return int(self.index[rev][0] >> 16) def end(self, rev): return self.start(rev) + self.length(rev) def length(self, rev): return self.index[rev][1] def chainbase(self, rev): index = self.index base = index[rev][3] while base != rev: rev = base base = index[rev][3] return base def chainlen(self, rev): return self._chaininfo(rev)[0] def _chaininfo(self, rev): chaininfocache = self._chaininfocache if rev in chaininfocache: return chaininfocache[rev] index = self.index generaldelta = self._generaldelta iterrev = rev e = index[iterrev] clen = 0 compresseddeltalen = 0 while iterrev != e[3]: clen += 1 compresseddeltalen += e[1] if generaldelta: iterrev = e[3] else: iterrev -= 1 if iterrev in chaininfocache: t = chaininfocache[iterrev] clen += t[0] compresseddeltalen += t[1] break e = index[iterrev] else: # Add text length of base since decompressing that also takes # work. For cache hits the length is already included. compresseddeltalen += e[1] r = (clen, compresseddeltalen) chaininfocache[rev] = r return r def flags(self, rev): return self.index[rev][0] & 0xFFFF def rawsize(self, rev): """return the length of the uncompressed text for a given revision""" l = self.index[rev][2] if l >= 0: return l t = self.revision(self.node(rev)) return len(t) size = rawsize def ancestors(self, revs, stoprev=0, inclusive=False): """Generate the ancestors of 'revs' in reverse topological order. Does not generate revs lower than stoprev. See the documentation for ancestor.lazyancestors for more details.""" return ancestor.lazyancestors(self.parentrevs, revs, stoprev=stoprev, inclusive=inclusive) def descendants(self, revs): """Generate the descendants of 'revs' in revision order. Yield a sequence of revision numbers starting with a child of some rev in revs, i.e., each revision is *not* considered a descendant of itself. Results are ordered by revision number (a topological sort).""" first = min(revs) if first == nullrev: for i in self: yield i return seen = set(revs) for i in self.revs(start=first + 1): for x in self.parentrevs(i): if x != nullrev and x in seen: seen.add(i) yield i break def findcommonmissing(self, common=None, heads=None): """Return a tuple of the ancestors of common and the ancestors of heads that are not ancestors of common. In revset terminology, we return the tuple: ::common, (::heads) - (::common) The list is sorted by revision number, meaning it is topologically sorted. 'heads' and 'common' are both lists of node IDs. If heads is not supplied, uses all of the revlog's heads. If common is not supplied, uses nullid.""" if common is None: common = [nullid] if heads is None: heads = self.heads() common = [self.rev(n) for n in common] heads = [self.rev(n) for n in heads] # we want the ancestors, but inclusive class lazyset(object): def __init__(self, lazyvalues): self.addedvalues = set() self.lazyvalues = lazyvalues def __contains__(self, value): return value in self.addedvalues or value in self.lazyvalues def __iter__(self): added = self.addedvalues for r in added: yield r for r in self.lazyvalues: if not r in added: yield r def add(self, value): self.addedvalues.add(value) def update(self, values): self.addedvalues.update(values) has = lazyset(self.ancestors(common)) has.add(nullrev) has.update(common) # take all ancestors from heads that aren't in has missing = set() visit = util.deque(r for r in heads if r not in has) while visit: r = visit.popleft() if r in missing: continue else: missing.add(r) for p in self.parentrevs(r): if p not in has: visit.append(p) missing = list(missing) missing.sort() return has, [self.node(r) for r in missing] def incrementalmissingrevs(self, common=None): """Return an object that can be used to incrementally compute the revision numbers of the ancestors of arbitrary sets that are not ancestors of common. This is an ancestor.incrementalmissingancestors object. 'common' is a list of revision numbers. If common is not supplied, uses nullrev. """ if common is None: common = [nullrev] return ancestor.incrementalmissingancestors(self.parentrevs, common) def findmissingrevs(self, common=None, heads=None): """Return the revision numbers of the ancestors of heads that are not ancestors of common. More specifically, return a list of revision numbers corresponding to nodes N such that every N satisfies the following constraints: 1. N is an ancestor of some node in 'heads' 2. N is not an ancestor of any node in 'common' The list is sorted by revision number, meaning it is topologically sorted. 'heads' and 'common' are both lists of revision numbers. If heads is not supplied, uses all of the revlog's heads. If common is not supplied, uses nullid.""" if common is None: common = [nullrev] if heads is None: heads = self.headrevs() inc = self.incrementalmissingrevs(common=common) return inc.missingancestors(heads) def findmissing(self, common=None, heads=None): """Return the ancestors of heads that are not ancestors of common. More specifically, return a list of nodes N such that every N satisfies the following constraints: 1. N is an ancestor of some node in 'heads' 2. N is not an ancestor of any node in 'common' The list is sorted by revision number, meaning it is topologically sorted. 'heads' and 'common' are both lists of node IDs. If heads is not supplied, uses all of the revlog's heads. If common is not supplied, uses nullid.""" if common is None: common = [nullid] if heads is None: heads = self.heads() common = [self.rev(n) for n in common] heads = [self.rev(n) for n in heads] inc = self.incrementalmissingrevs(common=common) return [self.node(r) for r in inc.missingancestors(heads)] def nodesbetween(self, roots=None, heads=None): """Return a topological path from 'roots' to 'heads'. Return a tuple (nodes, outroots, outheads) where 'nodes' is a topologically sorted list of all nodes N that satisfy both of these constraints: 1. N is a descendant of some node in 'roots' 2. N is an ancestor of some node in 'heads' Every node is considered to be both a descendant and an ancestor of itself, so every reachable node in 'roots' and 'heads' will be included in 'nodes'. 'outroots' is the list of reachable nodes in 'roots', i.e., the subset of 'roots' that is returned in 'nodes'. Likewise, 'outheads' is the subset of 'heads' that is also in 'nodes'. 'roots' and 'heads' are both lists of node IDs. If 'roots' is unspecified, uses nullid as the only root. If 'heads' is unspecified, uses list of all of the revlog's heads.""" nonodes = ([], [], []) if roots is not None: roots = list(roots) if not roots: return nonodes lowestrev = min([self.rev(n) for n in roots]) else: roots = [nullid] # Everybody's a descendant of nullid lowestrev = nullrev if (lowestrev == nullrev) and (heads is None): # We want _all_ the nodes! return ([self.node(r) for r in self], [nullid], list(self.heads())) if heads is None: # All nodes are ancestors, so the latest ancestor is the last # node. highestrev = len(self) - 1 # Set ancestors to None to signal that every node is an ancestor. ancestors = None # Set heads to an empty dictionary for later discovery of heads heads = {} else: heads = list(heads) if not heads: return nonodes ancestors = set() # Turn heads into a dictionary so we can remove 'fake' heads. # Also, later we will be using it to filter out the heads we can't # find from roots. heads = dict.fromkeys(heads, False) # Start at the top and keep marking parents until we're done. nodestotag = set(heads) # Remember where the top was so we can use it as a limit later. highestrev = max([self.rev(n) for n in nodestotag]) while nodestotag: # grab a node to tag n = nodestotag.pop() # Never tag nullid if n == nullid: continue # A node's revision number represents its place in a # topologically sorted list of nodes. r = self.rev(n) if r >= lowestrev: if n not in ancestors: # If we are possibly a descendant of one of the roots # and we haven't already been marked as an ancestor ancestors.add(n) # Mark as ancestor # Add non-nullid parents to list of nodes to tag. nodestotag.update([p for p in self.parents(n) if p != nullid]) elif n in heads: # We've seen it before, is it a fake head? # So it is, real heads should not be the ancestors of # any other heads. heads.pop(n) if not ancestors: return nonodes # Now that we have our set of ancestors, we want to remove any # roots that are not ancestors. # If one of the roots was nullid, everything is included anyway. if lowestrev > nullrev: # But, since we weren't, let's recompute the lowest rev to not # include roots that aren't ancestors. # Filter out roots that aren't ancestors of heads roots = [n for n in roots if n in ancestors] # Recompute the lowest revision if roots: lowestrev = min([self.rev(n) for n in roots]) else: # No more roots? Return empty list return nonodes else: # We are descending from nullid, and don't need to care about # any other roots. lowestrev = nullrev roots = [nullid] # Transform our roots list into a set. descendants = set(roots) # Also, keep the original roots so we can filter out roots that aren't # 'real' roots (i.e. are descended from other roots). roots = descendants.copy() # Our topologically sorted list of output nodes. orderedout = [] # Don't start at nullid since we don't want nullid in our output list, # and if nullid shows up in descendants, empty parents will look like # they're descendants. for r in self.revs(start=max(lowestrev, 0), stop=highestrev + 1): n = self.node(r) isdescendant = False if lowestrev == nullrev: # Everybody is a descendant of nullid isdescendant = True elif n in descendants: # n is already a descendant isdescendant = True # This check only needs to be done here because all the roots # will start being marked is descendants before the loop. if n in roots: # If n was a root, check if it's a 'real' root. p = tuple(self.parents(n)) # If any of its parents are descendants, it's not a root. if (p[0] in descendants) or (p[1] in descendants): roots.remove(n) else: p = tuple(self.parents(n)) # A node is a descendant if either of its parents are # descendants. (We seeded the dependents list with the roots # up there, remember?) if (p[0] in descendants) or (p[1] in descendants): descendants.add(n) isdescendant = True if isdescendant and ((ancestors is None) or (n in ancestors)): # Only include nodes that are both descendants and ancestors. orderedout.append(n) if (ancestors is not None) and (n in heads): # We're trying to figure out which heads are reachable # from roots. # Mark this head as having been reached heads[n] = True elif ancestors is None: # Otherwise, we're trying to discover the heads. # Assume this is a head because if it isn't, the next step # will eventually remove it. heads[n] = True # But, obviously its parents aren't. for p in self.parents(n): heads.pop(p, None) heads = [n for n, flag in heads.iteritems() if flag] roots = list(roots) assert orderedout assert roots assert heads return (orderedout, roots, heads) def headrevs(self): try: return self.index.headrevs() except AttributeError: return self._headrevs() def _headrevs(self): count = len(self) if not count: return [nullrev] # we won't iter over filtered rev so nobody is a head at start ishead = [0] * (count + 1) index = self.index for r in self: ishead[r] = 1 # I may be an head e = index[r] ishead[e[5]] = ishead[e[6]] = 0 # my parent are not return [r for r, val in enumerate(ishead) if val] def heads(self, start=None, stop=None): """return the list of all nodes that have no children if start is specified, only heads that are descendants of start will be returned if stop is specified, it will consider all the revs from stop as if they had no children """ if start is None and stop is None: if not len(self): return [nullid] return [self.node(r) for r in self.headrevs()] if start is None: start = nullid if stop is None: stop = [] stoprevs = set([self.rev(n) for n in stop]) startrev = self.rev(start) reachable = set((startrev,)) heads = set((startrev,)) parentrevs = self.parentrevs for r in self.revs(start=startrev + 1): for p in parentrevs(r): if p in reachable: if r not in stoprevs: reachable.add(r) heads.add(r) if p in heads and p not in stoprevs: heads.remove(p) return [self.node(r) for r in heads] def children(self, node): """find the children of a given node""" c = [] p = self.rev(node) for r in self.revs(start=p + 1): prevs = [pr for pr in self.parentrevs(r) if pr != nullrev] if prevs: for pr in prevs: if pr == p: c.append(self.node(r)) elif p == nullrev: c.append(self.node(r)) return c def descendant(self, start, end): if start == nullrev: return True for i in self.descendants([start]): if i == end: return True elif i > end: break return False def commonancestorsheads(self, a, b): """calculate all the heads of the common ancestors of nodes a and b""" a, b = self.rev(a), self.rev(b) try: ancs = self.index.commonancestorsheads(a, b) except (AttributeError, OverflowError): # C implementation failed ancs = ancestor.commonancestorsheads(self.parentrevs, a, b) return map(self.node, ancs) def isancestor(self, a, b): """return True if node a is an ancestor of node b The implementation of this is trivial but the use of commonancestorsheads is not.""" return a in self.commonancestorsheads(a, b) def ancestor(self, a, b): """calculate the "best" common ancestor of nodes a and b""" a, b = self.rev(a), self.rev(b) try: ancs = self.index.ancestors(a, b) except (AttributeError, OverflowError): ancs = ancestor.ancestors(self.parentrevs, a, b) if ancs: # choose a consistent winner when there's a tie return min(map(self.node, ancs)) return nullid def _match(self, id): if isinstance(id, int): # rev return self.node(id) if len(id) == 20: # possibly a binary node # odds of a binary node being all hex in ASCII are 1 in 10**25 try: node = id self.rev(node) # quick search the index return node except LookupError: pass # may be partial hex id try: # str(rev) rev = int(id) if str(rev) != id: raise ValueError if rev < 0: rev = len(self) + rev if rev < 0 or rev >= len(self): raise ValueError return self.node(rev) except (ValueError, OverflowError): pass if len(id) == 40: try: # a full hex nodeid? node = bin(id) self.rev(node) return node except (TypeError, LookupError): pass def _partialmatch(self, id): try: n = self.index.partialmatch(id) if n and self.hasnode(n): return n return None except RevlogError: # parsers.c radix tree lookup gave multiple matches # fall through to slow path that filters hidden revisions pass except (AttributeError, ValueError): # we are pure python, or key was too short to search radix tree pass if id in self._pcache: return self._pcache[id] if len(id) < 40: try: # hex(node)[:...] l = len(id) // 2 # grab an even number of digits prefix = bin(id[:l * 2]) nl = [e[7] for e in self.index if e[7].startswith(prefix)] nl = [n for n in nl if hex(n).startswith(id) and self.hasnode(n)] if len(nl) > 0: if len(nl) == 1: self._pcache[id] = nl[0] return nl[0] raise LookupError(id, self.indexfile, _('ambiguous identifier')) return None except TypeError: pass def lookup(self, id): """locate a node based on: - revision number or str(revision number) - nodeid or subset of hex nodeid """ n = self._match(id) if n is not None: return n n = self._partialmatch(id) if n: return n raise LookupError(id, self.indexfile, _('no match found')) def cmp(self, node, text): """compare text with a given file revision returns True if text is different than what is stored. """ p1, p2 = self.parents(node) return hash(text, p1, p2) != node def _addchunk(self, offset, data): o, d = self._chunkcache # try to add to existing cache if o + len(d) == offset and len(d) + len(data) < _chunksize: self._chunkcache = o, d + data else: self._chunkcache = offset, data def _loadchunk(self, offset, length): if self._inline: df = self.opener(self.indexfile) else: df = self.opener(self.datafile) # Cache data both forward and backward around the requested # data, in a fixed size window. This helps speed up operations # involving reading the revlog backwards. cachesize = self._chunkcachesize realoffset = offset & ~(cachesize - 1) reallength = (((offset + length + cachesize) & ~(cachesize - 1)) - realoffset) df.seek(realoffset) d = df.read(reallength) df.close() self._addchunk(realoffset, d) if offset != realoffset or reallength != length: return util.buffer(d, offset - realoffset, length) return d def _getchunk(self, offset, length): o, d = self._chunkcache l = len(d) # is it in the cache? cachestart = offset - o cacheend = cachestart + length if cachestart >= 0 and cacheend <= l: if cachestart == 0 and cacheend == l: return d # avoid a copy return util.buffer(d, cachestart, cacheend - cachestart) return self._loadchunk(offset, length) def _chunkraw(self, startrev, endrev): start = self.start(startrev) end = self.end(endrev) if self._inline: start += (startrev + 1) * self._io.size end += (endrev + 1) * self._io.size length = end - start return self._getchunk(start, length) def _chunk(self, rev): return decompress(self._chunkraw(rev, rev)) def _chunks(self, revs): '''faster version of [self._chunk(rev) for rev in revs] Assumes that revs is in ascending order.''' if not revs: return [] start = self.start length = self.length inline = self._inline iosize = self._io.size buffer = util.buffer l = [] ladd = l.append # preload the cache try: while True: # ensure that the cache doesn't change out from under us _cache = self._chunkcache self._chunkraw(revs[0], revs[-1]) if _cache == self._chunkcache: break offset, data = _cache except OverflowError: # issue4215 - we can't cache a run of chunks greater than # 2G on Windows return [self._chunk(rev) for rev in revs] for rev in revs: chunkstart = start(rev) if inline: chunkstart += (rev + 1) * iosize chunklength = length(rev) ladd(decompress(buffer(data, chunkstart - offset, chunklength))) return l def _chunkclear(self): self._chunkcache = (0, '') def deltaparent(self, rev): """return deltaparent of the given revision""" base = self.index[rev][3] if base == rev: return nullrev elif self._generaldelta: return base else: return rev - 1 def revdiff(self, rev1, rev2): """return or calculate a delta between two revisions""" if rev1 != nullrev and self.deltaparent(rev2) == rev1: return str(self._chunk(rev2)) return mdiff.textdiff(self.revision(rev1), self.revision(rev2)) def revision(self, nodeorrev): """return an uncompressed revision of a given node or revision number. """ if isinstance(nodeorrev, int): rev = nodeorrev node = self.node(rev) else: node = nodeorrev rev = None _cache = self._cache # grab local copy of cache to avoid thread race cachedrev = None if node == nullid: return "" if _cache: if _cache[0] == node: return _cache[2] cachedrev = _cache[1] # look up what we need to read text = None if rev is None: rev = self.rev(node) # check rev flags if self.flags(rev) & ~REVIDX_KNOWN_FLAGS: raise RevlogError(_('incompatible revision flag %x') % (self.flags(rev) & ~REVIDX_KNOWN_FLAGS)) # build delta chain chain = [] index = self.index # for performance generaldelta = self._generaldelta iterrev = rev e = index[iterrev] while iterrev != e[3] and iterrev != cachedrev: chain.append(iterrev) if generaldelta: iterrev = e[3] else: iterrev -= 1 e = index[iterrev] if iterrev == cachedrev: # cache hit text = _cache[2] else: chain.append(iterrev) chain.reverse() # drop cache to save memory self._cache = None bins = self._chunks(chain) if text is None: text = str(bins[0]) bins = bins[1:] text = mdiff.patches(text, bins) text = self._checkhash(text, node, rev) self._cache = (node, rev, text) return text def hash(self, text, p1, p2): """Compute a node hash. Available as a function so that subclasses can replace the hash as needed. """ return hash(text, p1, p2) def _checkhash(self, text, node, rev): p1, p2 = self.parents(node) self.checkhash(text, p1, p2, node, rev) return text def checkhash(self, text, p1, p2, node, rev=None): if node != self.hash(text, p1, p2): revornode = rev if revornode is None: revornode = templatefilters.short(hex(node)) raise RevlogError(_("integrity check failed on %s:%s") % (self.indexfile, revornode)) def checkinlinesize(self, tr, fp=None): if not self._inline or (self.start(-2) + self.length(-2)) < _maxinline: return trinfo = tr.find(self.indexfile) if trinfo is None: raise RevlogError(_("%s not found in the transaction") % self.indexfile) trindex = trinfo[2] dataoff = self.start(trindex) tr.add(self.datafile, dataoff) if fp: fp.flush() fp.close() df = self.opener(self.datafile, 'w') try: for r in self: df.write(self._chunkraw(r, r)) finally: df.close() fp = self.opener(self.indexfile, 'w', atomictemp=True) self.version &= ~(REVLOGNGINLINEDATA) self._inline = False for i in self: e = self._io.packentry(self.index[i], self.node, self.version, i) fp.write(e) # if we don't call close, the temp file will never replace the # real index fp.close() tr.replace(self.indexfile, trindex * self._io.size) self._chunkclear() def addrevision(self, text, transaction, link, p1, p2, cachedelta=None, node=None): """add a revision to the log text - the revision data to add transaction - the transaction object used for rollback link - the linkrev data to add p1, p2 - the parent nodeids of the revision cachedelta - an optional precomputed delta node - nodeid of revision; typically node is not specified, and it is computed by default as hash(text, p1, p2), however subclasses might use different hashing method (and override checkhash() in such case) """ if link == nullrev: raise RevlogError(_("attempted to add linkrev -1 to %s") % self.indexfile) node = node or self.hash(text, p1, p2) if node in self.nodemap: return node dfh = None if not self._inline: dfh = self.opener(self.datafile, "a") ifh = self.opener(self.indexfile, "a+") try: return self._addrevision(node, text, transaction, link, p1, p2, REVIDX_DEFAULT_FLAGS, cachedelta, ifh, dfh) finally: if dfh: dfh.close() ifh.close() def compress(self, text): """ generate a possibly-compressed representation of text """ if not text: return ("", text) l = len(text) bin = None if l < 44: pass elif l > 1000000: # zlib makes an internal copy, thus doubling memory usage for # large files, so lets do this in pieces z = zlib.compressobj() p = [] pos = 0 while pos < l: pos2 = pos + 2**20 p.append(z.compress(text[pos:pos2])) pos = pos2 p.append(z.flush()) if sum(map(len, p)) < l: bin = "".join(p) else: bin = _compress(text) if bin is None or len(bin) > l: if text[0] == '\0': return ("", text) return ('u', text) return ("", bin) def _addrevision(self, node, text, transaction, link, p1, p2, flags, cachedelta, ifh, dfh): """internal function to add revisions to the log see addrevision for argument descriptions. invariants: - text is optional (can be None); if not set, cachedelta must be set. if both are set, they must correspond to each other. """ btext = [text] def buildtext(): if btext[0] is not None: return btext[0] # flush any pending writes here so we can read it in revision if dfh: dfh.flush() ifh.flush() baserev = cachedelta[0] delta = cachedelta[1] # special case deltas which replace entire base; no need to decode # base revision. this neatly avoids censored bases, which throw when # they're decoded. hlen = struct.calcsize(">lll") if delta[:hlen] == mdiff.replacediffheader(self.rawsize(baserev), len(delta) - hlen): btext[0] = delta[hlen:] else: basetext = self.revision(self.node(baserev)) btext[0] = mdiff.patch(basetext, delta) try: self.checkhash(btext[0], p1, p2, node) if flags & REVIDX_ISCENSORED: raise RevlogError(_('node %s is not censored') % node) except CensoredNodeError: # must pass the censored index flag to add censored revisions if not flags & REVIDX_ISCENSORED: raise return btext[0] def builddelta(rev): # can we use the cached delta? if cachedelta and cachedelta[0] == rev: delta = cachedelta[1] else: t = buildtext() if self.iscensored(rev): # deltas based on a censored revision must replace the # full content in one patch, so delta works everywhere header = mdiff.replacediffheader(self.rawsize(rev), len(t)) delta = header + t else: ptext = self.revision(self.node(rev)) delta = mdiff.textdiff(ptext, t) data = self.compress(delta) l = len(data[1]) + len(data[0]) if basecache[0] == rev: chainbase = basecache[1] else: chainbase = self.chainbase(rev) dist = l + offset - self.start(chainbase) if self._generaldelta: base = rev else: base = chainbase chainlen, compresseddeltalen = self._chaininfo(rev) chainlen += 1 compresseddeltalen += l return dist, l, data, base, chainbase, chainlen, compresseddeltalen curr = len(self) prev = curr - 1 base = chainbase = curr chainlen = None offset = self.end(prev) d = None if self._basecache is None: self._basecache = (prev, self.chainbase(prev)) basecache = self._basecache p1r, p2r = self.rev(p1), self.rev(p2) # should we try to build a delta? if prev != nullrev: if self._generaldelta: if p1r >= basecache[1]: d = builddelta(p1r) elif p2r >= basecache[1]: d = builddelta(p2r) else: d = builddelta(prev) else: d = builddelta(prev) dist, l, data, base, chainbase, chainlen, compresseddeltalen = d # full versions are inserted when the needed deltas # become comparable to the uncompressed text if text is None: textlen = mdiff.patchedsize(self.rawsize(cachedelta[0]), cachedelta[1]) else: textlen = len(text) # - 'dist' is the distance from the base revision -- bounding it limits # the amount of I/O we need to do. # - 'compresseddeltalen' is the sum of the total size of deltas we need # to apply -- bounding it limits the amount of CPU we consume. if (d is None or dist > textlen * 4 or l > textlen or compresseddeltalen > textlen * 2 or (self._maxchainlen and chainlen > self._maxchainlen)): text = buildtext() data = self.compress(text) l = len(data[1]) + len(data[0]) base = chainbase = curr e = (offset_type(offset, flags), l, textlen, base, link, p1r, p2r, node) self.index.insert(-1, e) self.nodemap[node] = curr entry = self._io.packentry(e, self.node, self.version, curr) self._writeentry(transaction, ifh, dfh, entry, data, link, offset) if type(text) == str: # only accept immutable objects self._cache = (node, curr, text) self._basecache = (curr, chainbase) return node def _writeentry(self, transaction, ifh, dfh, entry, data, link, offset): curr = len(self) - 1 if not self._inline: transaction.add(self.datafile, offset) transaction.add(self.indexfile, curr * len(entry)) if data[0]: dfh.write(data[0]) dfh.write(data[1]) dfh.flush() ifh.write(entry) else: offset += curr * self._io.size transaction.add(self.indexfile, offset, curr) ifh.write(entry) ifh.write(data[0]) ifh.write(data[1]) self.checkinlinesize(transaction, ifh) def addgroup(self, bundle, linkmapper, transaction): """ add a delta group given a set of deltas, add them to the revision log. the first delta is against its parent, which should be in our log, the rest are against the previous delta. """ # track the base of the current delta log content = [] node = None r = len(self) end = 0 if r: end = self.end(r - 1) ifh = self.opener(self.indexfile, "a+") isize = r * self._io.size if self._inline: transaction.add(self.indexfile, end + isize, r) dfh = None else: transaction.add(self.indexfile, isize, r) transaction.add(self.datafile, end) dfh = self.opener(self.datafile, "a") try: # loop through our set of deltas chain = None while True: chunkdata = bundle.deltachunk(chain) if not chunkdata: break node = chunkdata['node'] p1 = chunkdata['p1'] p2 = chunkdata['p2'] cs = chunkdata['cs'] deltabase = chunkdata['deltabase'] delta = chunkdata['delta'] content.append(node) link = linkmapper(cs) if node in self.nodemap: # this can happen if two branches make the same change chain = node continue for p in (p1, p2): if p not in self.nodemap: raise LookupError(p, self.indexfile, _('unknown parent')) if deltabase not in self.nodemap: raise LookupError(deltabase, self.indexfile, _('unknown delta base')) baserev = self.rev(deltabase) if baserev != nullrev and self.iscensored(baserev): # if base is censored, delta must be full replacement in a # single patch operation hlen = struct.calcsize(">lll") oldlen = self.rawsize(baserev) newlen = len(delta) - hlen if delta[:hlen] != mdiff.replacediffheader(oldlen, newlen): raise error.CensoredBaseError(self.indexfile, self.node(baserev)) chain = self._addrevision(node, None, transaction, link, p1, p2, REVIDX_DEFAULT_FLAGS, (baserev, delta), ifh, dfh) if not dfh and not self._inline: # addrevision switched from inline to conventional # reopen the index ifh.close() dfh = self.opener(self.datafile, "a") ifh = self.opener(self.indexfile, "a") finally: if dfh: dfh.close() ifh.close() return content def iscensored(self, rev): """Check if a file revision is censored.""" return False def getstrippoint(self, minlink): """find the minimum rev that must be stripped to strip the linkrev Returns a tuple containing the minimum rev and a set of all revs that have linkrevs that will be broken by this strip. """ brokenrevs = set() strippoint = len(self) heads = {} futurelargelinkrevs = set() for head in self.headrevs(): headlinkrev = self.linkrev(head) heads[head] = headlinkrev if headlinkrev >= minlink: futurelargelinkrevs.add(headlinkrev) # This algorithm involves walking down the rev graph, starting at the # heads. Since the revs are topologically sorted according to linkrev, # once all head linkrevs are below the minlink, we know there are # no more revs that could have a linkrev greater than minlink. # So we can stop walking. while futurelargelinkrevs: strippoint -= 1 linkrev = heads.pop(strippoint) if linkrev < minlink: brokenrevs.add(strippoint) else: futurelargelinkrevs.remove(linkrev) for p in self.parentrevs(strippoint): if p != nullrev: plinkrev = self.linkrev(p) heads[p] = plinkrev if plinkrev >= minlink: futurelargelinkrevs.add(plinkrev) return strippoint, brokenrevs def strip(self, minlink, transaction): """truncate the revlog on the first revision with a linkrev >= minlink This function is called when we're stripping revision minlink and its descendants from the repository. We have to remove all revisions with linkrev >= minlink, because the equivalent changelog revisions will be renumbered after the strip. So we truncate the revlog on the first of these revisions, and trust that the caller has saved the revisions that shouldn't be removed and that it'll re-add them after this truncation. """ if len(self) == 0: return rev, _ = self.getstrippoint(minlink) if rev == len(self): return # first truncate the files on disk end = self.start(rev) if not self._inline: transaction.add(self.datafile, end) end = rev * self._io.size else: end += rev * self._io.size transaction.add(self.indexfile, end) # then reset internal state in memory to forget those revisions self._cache = None self._chaininfocache = {} self._chunkclear() for x in xrange(rev, len(self)): del self.nodemap[self.node(x)] del self.index[rev:-1] def checksize(self): expected = 0 if len(self): expected = max(0, self.end(len(self) - 1)) try: f = self.opener(self.datafile) f.seek(0, 2) actual = f.tell() f.close() dd = actual - expected except IOError, inst: if inst.errno != errno.ENOENT: raise dd = 0 try: f = self.opener(self.indexfile) f.seek(0, 2) actual = f.tell() f.close() s = self._io.size i = max(0, actual // s) di = actual - (i * s) if self._inline: databytes = 0 for r in self: databytes += max(0, self.length(r)) dd = 0 di = actual - len(self) * s - databytes except IOError, inst: if inst.errno != errno.ENOENT: raise di = 0 return (dd, di) def files(self): res = [self.indexfile] if not self._inline: res.append(self.datafile) return res