tests/test-ui-verbosity.py.out
author Gregory Szorc <gregory.szorc@gmail.com>
Mon, 26 Mar 2018 11:00:16 -0700
changeset 37288 9bfcbe4f4745
parent 8449 807f3f5c60e9
permissions -rw-r--r--
wireproto: add streams to frame-based protocol Previously, the frame-based protocol was just a series of frames, with each frame associated with a request ID. In order to scale the protocol, we'll want to enable the use of compression. While it is possible to enable compression at the socket/pipe level, this has its disadvantages. The big one is it undermines the point of frames being standalone, atomic units that can be read and written: if you add compression above the framing protocol, you are back to having a stream-based protocol as opposed to something frame-based. So in order to preserve frames, compression needs to occur at the frame payload level. Compressing each frame's payload individually will limit compression ratios because the window size of the compressor will be limited by the max frame size, which is 32-64kb as currently defined. It will also add CPU overhead, as it is more efficient for compressors to operate on fewer, larger blocks of data than more, smaller blocks. So compressing each frame independently is out. This means we need to compress each frame's payload as if it is part of a larger stream. The simplest approach is to have 1 stream per connection. This could certainly work. However, it has disadvantages (documented below). We could also have 1 stream per RPC/command invocation. (This is the model HTTP/2 goes with.) This also has disadvantages. The main disadvantage to one global stream is that it has the very real potential to create CPU bottlenecks doing compression. Networks are only getting faster and the performance of single CPU cores has been relatively flat. Newer compression formats like zstandard offer better CPU cycle efficiency than predecessors like zlib. But it still all too common to saturate your CPU with compression overhead long before you saturate the network pipe. The main disadvantage with streams per request is that you can't reap the benefits of the compression context for multiple requests. For example, if you send 1000 RPC requests (or HTTP/2 requests for that matter), the response to each would have its own compression context. The overall size of the raw responses would be larger because compression contexts wouldn't be able to reference data from another request or response. The approach for streams as implemented in this commit is to support N streams per connection and for streams to potentially span requests and responses. As explained by the added internals docs, this facilitates servers and clients delegating independent streams and compression to independent threads / CPU cores. This helps alleviate the CPU bottleneck of compression. This design also allows compression contexts to be reused across requests/responses. This can result in improved compression ratios and less overhead for compressors and decompressors having to build new contexts. Another feature that was defined was the ability for individual frames within a stream to declare whether that individual frame's payload uses the content encoding (read: compression) defined by the stream. The idea here is that some servers may serve data from a combination of caches and dynamic resolution. Data coming from caches may be pre-compressed. We want to facilitate servers being able to essentially stream bytes from caches to the wire with minimal overhead. Being able to mix and match with frames are compressed within a stream enables these types of advanced server functionality. This commit defines the new streams mechanism. Basic code for supporting streams in frames has been added. But that code is seriously lacking and doesn't fully conform to the defined protocol. For example, we don't close any streams. And support for content encoding within streams is not yet implemented. The change was rather invasive and I didn't think it would be reasonable to implement the entire feature in a single commit. For the record, I would have loved to reuse an existing multiplexing protocol to build the new wire protocol on top of. However, I couldn't find a protocol that offers the performance and scaling characteristics that I desired. Namely, it should support multiple compression contexts to facilitate scaling out to multiple CPU cores and compression contexts should be able to live longer than single RPC requests. HTTP/2 *almost* fits the bill. But the semantics of HTTP message exchange state that streams can only live for a single request-response. We /could/ tunnel on top of HTTP/2 streams and frames with HEADER and DATA frames. But there's no guarantee that HTTP/2 libraries and proxies would allow us to use HTTP/2 streams and frames without the HTTP message exchange semantics defined in RFC 7540 Section 8. Other RPC protocols like gRPC tunnel are built on top of HTTP/2 and thus preserve its semantics of stream per RPC invocation. Even QUIC does this. We could attempt to invent a higher-level stream that spans HTTP/2 streams. But this would be violating HTTP/2 because there is no guarantee that HTTP/2 streams are routed to the same server. The best we can do - which is what this protocol does - is shoehorn all request and response data into a single HTTP message and create streams within. At that point, we've defined a Content-Type in HTTP parlance. It just so happens our media type can also work as a standalone, stream-based protocol, without leaning on HTTP or similar protocol. Differential Revision: https://phab.mercurial-scm.org/D2907

      hgrc settings    command line options      final result   
    quiet verbo debug   quiet verbo debug      quiet verbo debug
 0  False False False   False False False  ->  False False False
 1   True False False   False False False  ->   True False False
 2  False  True False   False False False  ->  False  True False
 3   True  True False   False False False  ->  False False False
 4  False False  True   False False False  ->  False  True  True
 5   True False  True   False False False  ->  False  True  True
 6  False  True  True   False False False  ->  False  True  True
 7   True  True  True   False False False  ->  False  True  True
 8  False False False    True False False  ->   True False False
 9   True False False    True False False  ->   True False False
10  False  True False    True False False  ->   True False False
11   True  True False    True False False  ->   True False False
12  False False  True    True False False  ->   True False False
13   True False  True    True False False  ->   True False False
14  False  True  True    True False False  ->   True False False
15   True  True  True    True False False  ->   True False False
16  False False False   False  True False  ->  False  True False
17   True False False   False  True False  ->  False  True False
18  False  True False   False  True False  ->  False  True False
19   True  True False   False  True False  ->  False  True False
20  False False  True   False  True False  ->  False  True False
21   True False  True   False  True False  ->  False  True False
22  False  True  True   False  True False  ->  False  True False
23   True  True  True   False  True False  ->  False  True False
24  False False False    True  True False  ->  False False False
25   True False False    True  True False  ->  False False False
26  False  True False    True  True False  ->  False False False
27   True  True False    True  True False  ->  False False False
28  False False  True    True  True False  ->  False False False
29   True False  True    True  True False  ->  False False False
30  False  True  True    True  True False  ->  False False False
31   True  True  True    True  True False  ->  False False False
32  False False False   False False  True  ->  False  True  True
33   True False False   False False  True  ->  False  True  True
34  False  True False   False False  True  ->  False  True  True
35   True  True False   False False  True  ->  False  True  True
36  False False  True   False False  True  ->  False  True  True
37   True False  True   False False  True  ->  False  True  True
38  False  True  True   False False  True  ->  False  True  True
39   True  True  True   False False  True  ->  False  True  True
40  False False False    True False  True  ->  False  True  True
41   True False False    True False  True  ->  False  True  True
42  False  True False    True False  True  ->  False  True  True
43   True  True False    True False  True  ->  False  True  True
44  False False  True    True False  True  ->  False  True  True
45   True False  True    True False  True  ->  False  True  True
46  False  True  True    True False  True  ->  False  True  True
47   True  True  True    True False  True  ->  False  True  True
48  False False False   False  True  True  ->  False  True  True
49   True False False   False  True  True  ->  False  True  True
50  False  True False   False  True  True  ->  False  True  True
51   True  True False   False  True  True  ->  False  True  True
52  False False  True   False  True  True  ->  False  True  True
53   True False  True   False  True  True  ->  False  True  True
54  False  True  True   False  True  True  ->  False  True  True
55   True  True  True   False  True  True  ->  False  True  True
56  False False False    True  True  True  ->  False  True  True
57   True False False    True  True  True  ->  False  True  True
58  False  True False    True  True  True  ->  False  True  True
59   True  True False    True  True  True  ->  False  True  True
60  False False  True    True  True  True  ->  False  True  True
61   True False  True    True  True  True  ->  False  True  True
62  False  True  True    True  True  True  ->  False  True  True
63   True  True  True    True  True  True  ->  False  True  True