contrib/synthrepo.py
author Gregory Szorc <gregory.szorc@gmail.com>
Fri, 15 Mar 2019 11:24:08 -0700
changeset 42024 b05a3e28cf24
parent 41420 2ff8994ac71d
child 43006 c07812bdd568
permissions -rw-r--r--
automation: perform tasks on remote machines Sometimes you don't have access to a machine in order to do something. For example, you may not have access to a Windows machine required to build Windows binaries or run tests on that platform. This commit introduces a pile of code intended to help "automate" common tasks, like building release artifacts. In its current form, the automation code provides functionality for performing tasks on Windows EC2 instances. The hgautomation.aws module provides functionality for integrating with AWS. It manages EC2 resources such as IAM roles, EC2 security groups, AMIs, and instances. The hgautomation.windows module provides a higher-level interface for performing tasks on remote Windows machines. The hgautomation.cli module provides a command-line interface to these higher-level primitives. I attempted to structure Windows remote machine interaction around Windows Remoting / PowerShell. This is kinda/sorta like SSH + shell, but for Windows. In theory, most of the functionality is cloud provider agnostic, as we should be able to use any established WinRM connection to interact with a remote. In reality, we're tightly coupled to AWS at the moment because I didn't want to prematurely add abstractions for a 2nd cloud provider. (1 was hard enough to implement.) In the aws module is code for creating an image with a fully functional Mercurial development environment. It contains VC9, VC2017, msys, and other dependencies. The image is fully capable of building all the existing Mercurial release artifacts and running tests. There are a few things that don't work. For example, running Windows tests with Python 3. But building the Windows release artifacts does work. And that was an impetus for this work. (Although we don't yet support code signing.) Getting this functionality to work was extremely time consuming. It took hours debugging permissions failures and other wonky behavior due to PowerShell Remoting. (The permissions model for PowerShell is crazy and you brush up against all kinds of issues because of the user/privileges of the user running the PowerShell and the permissions of the PowerShell session itself.) The functionality around AWS resource management could use some improving. In theory we support shared tenancy via resource name prefixing. In reality, we don't offer a way to configure this. Speaking of AWS resource management, I thought about using a tool like Terraform to manage resources. But at our scale, writing a few dozen lines of code to manage resources seemed acceptable. Maybe we should reconsider this if things grow out of control. Time will tell. Currently, emphasis is placed on Windows. But I only started there because it was likely to be the most difficult to implement. It should be relatively trivial to automate tasks on remote Linux machines. In fact, I have a ~1 year old script to run tests on a remote EC2 instance. I will likely be porting that to this new "framework" in the near future. # no-check-commit because foo_bar functions Differential Revision: https://phab.mercurial-scm.org/D6142

# synthrepo.py - repo synthesis
#
# Copyright 2012 Facebook
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

'''synthesize structurally interesting change history

This extension is useful for creating a repository with properties
that are statistically similar to an existing repository. During
analysis, a simple probability table is constructed from the history
of an existing repository.  During synthesis, these properties are
reconstructed.

Properties that are analyzed and synthesized include the following:

- Lines added or removed when an existing file is modified
- Number and sizes of files added
- Number of files removed
- Line lengths
- Topological distance to parent changeset(s)
- Probability of a commit being a merge
- Probability of a newly added file being added to a new directory
- Interarrival time, and time zone, of commits
- Number of files in each directory

A few obvious properties that are not currently handled realistically:

- Merges are treated as regular commits with two parents, which is not
  realistic
- Modifications are not treated as operations on hunks of lines, but
  as insertions and deletions of randomly chosen single lines
- Committer ID (always random)
- Executability of files
- Symlinks and binary files are ignored
'''

from __future__ import absolute_import
import bisect
import collections
import itertools
import json
import os
import random
import sys
import time

from mercurial.i18n import _
from mercurial.node import (
    nullid,
    nullrev,
    short,
)
from mercurial import (
    context,
    diffutil,
    error,
    hg,
    patch,
    registrar,
    scmutil,
)
from mercurial.utils import (
    dateutil,
)

# Note for extension authors: ONLY specify testedwith = 'ships-with-hg-core' for
# extensions which SHIP WITH MERCURIAL. Non-mainline extensions should
# be specifying the version(s) of Mercurial they are tested with, or
# leave the attribute unspecified.
testedwith = 'ships-with-hg-core'

cmdtable = {}
command = registrar.command(cmdtable)

newfile = {'new fi', 'rename', 'copy f', 'copy t'}

def zerodict():
    return collections.defaultdict(lambda: 0)

def roundto(x, k):
    if x > k * 2:
        return int(round(x / float(k)) * k)
    return int(round(x))

def parsegitdiff(lines):
    filename, mar, lineadd, lineremove = None, None, zerodict(), 0
    binary = False
    for line in lines:
        start = line[:6]
        if start == 'diff -':
            if filename:
                yield filename, mar, lineadd, lineremove, binary
            mar, lineadd, lineremove, binary = 'm', zerodict(), 0, False
            filename = patch.gitre.match(line).group(1)
        elif start in newfile:
            mar = 'a'
        elif start == 'GIT bi':
            binary = True
        elif start == 'delete':
            mar = 'r'
        elif start:
            s = start[0]
            if s == '-' and not line.startswith('--- '):
                lineremove += 1
            elif s == '+' and not line.startswith('+++ '):
                lineadd[roundto(len(line) - 1, 5)] += 1
    if filename:
        yield filename, mar, lineadd, lineremove, binary

@command('analyze',
         [('o', 'output', '', _('write output to given file'), _('FILE')),
          ('r', 'rev', [], _('analyze specified revisions'), _('REV'))],
         _('hg analyze'), optionalrepo=True)
def analyze(ui, repo, *revs, **opts):
    '''create a simple model of a repository to use for later synthesis

    This command examines every changeset in the given range (or all
    of history if none are specified) and creates a simple statistical
    model of the history of the repository. It also measures the directory
    structure of the repository as checked out.

    The model is written out to a JSON file, and can be used by
    :hg:`synthesize` to create or augment a repository with synthetic
    commits that have a structure that is statistically similar to the
    analyzed repository.
    '''
    root = repo.root
    if not root.endswith(os.path.sep):
        root += os.path.sep

    revs = list(revs)
    revs.extend(opts['rev'])
    if not revs:
        revs = [':']

    output = opts['output']
    if not output:
        output = os.path.basename(root) + '.json'

    if output == '-':
        fp = sys.stdout
    else:
        fp = open(output, 'w')

    # Always obtain file counts of each directory in the given root directory.
    def onerror(e):
        ui.warn(_('error walking directory structure: %s\n') % e)

    dirs = {}
    rootprefixlen = len(root)
    for dirpath, dirnames, filenames in os.walk(root, onerror=onerror):
        dirpathfromroot = dirpath[rootprefixlen:]
        dirs[dirpathfromroot] = len(filenames)
        if '.hg' in dirnames:
            dirnames.remove('.hg')

    lineschanged = zerodict()
    children = zerodict()
    p1distance = zerodict()
    p2distance = zerodict()
    linesinfilesadded = zerodict()
    fileschanged = zerodict()
    filesadded = zerodict()
    filesremoved = zerodict()
    linelengths = zerodict()
    interarrival = zerodict()
    parents = zerodict()
    dirsadded = zerodict()
    tzoffset = zerodict()

    # If a mercurial repo is available, also model the commit history.
    if repo:
        revs = scmutil.revrange(repo, revs)
        revs.sort()

        progress = ui.makeprogress(_('analyzing'), unit=_('changesets'),
                                   total=len(revs))
        for i, rev in enumerate(revs):
            progress.update(i)
            ctx = repo[rev]
            pl = ctx.parents()
            pctx = pl[0]
            prev = pctx.rev()
            children[prev] += 1
            p1distance[rev - prev] += 1
            parents[len(pl)] += 1
            tzoffset[ctx.date()[1]] += 1
            if len(pl) > 1:
                p2distance[rev - pl[1].rev()] += 1
            if prev == rev - 1:
                lastctx = pctx
            else:
                lastctx = repo[rev - 1]
            if lastctx.rev() != nullrev:
                timedelta = ctx.date()[0] - lastctx.date()[0]
                interarrival[roundto(timedelta, 300)] += 1
            diffopts = diffutil.diffallopts(ui, {'git': True})
            diff = sum((d.splitlines()
                       for d in ctx.diff(pctx, opts=diffopts)), [])
            fileadds, diradds, fileremoves, filechanges = 0, 0, 0, 0
            for filename, mar, lineadd, lineremove, isbin in parsegitdiff(diff):
                if isbin:
                    continue
                added = sum(lineadd.itervalues(), 0)
                if mar == 'm':
                    if added and lineremove:
                        lineschanged[roundto(added, 5),
                                     roundto(lineremove, 5)] += 1
                        filechanges += 1
                elif mar == 'a':
                    fileadds += 1
                    if '/' in filename:
                        filedir = filename.rsplit('/', 1)[0]
                        if filedir not in pctx.dirs():
                            diradds += 1
                    linesinfilesadded[roundto(added, 5)] += 1
                elif mar == 'r':
                    fileremoves += 1
                for length, count in lineadd.iteritems():
                    linelengths[length] += count
            fileschanged[filechanges] += 1
            filesadded[fileadds] += 1
            dirsadded[diradds] += 1
            filesremoved[fileremoves] += 1
        progress.complete()

    invchildren = zerodict()

    for rev, count in children.iteritems():
        invchildren[count] += 1

    if output != '-':
        ui.status(_('writing output to %s\n') % output)

    def pronk(d):
        return sorted(d.iteritems(), key=lambda x: x[1], reverse=True)

    json.dump({'revs': len(revs),
               'initdirs': pronk(dirs),
               'lineschanged': pronk(lineschanged),
               'children': pronk(invchildren),
               'fileschanged': pronk(fileschanged),
               'filesadded': pronk(filesadded),
               'linesinfilesadded': pronk(linesinfilesadded),
               'dirsadded': pronk(dirsadded),
               'filesremoved': pronk(filesremoved),
               'linelengths': pronk(linelengths),
               'parents': pronk(parents),
               'p1distance': pronk(p1distance),
               'p2distance': pronk(p2distance),
               'interarrival': pronk(interarrival),
               'tzoffset': pronk(tzoffset),
               },
              fp)
    fp.close()

@command('synthesize',
         [('c', 'count', 0, _('create given number of commits'), _('COUNT')),
          ('', 'dict', '', _('path to a dictionary of words'), _('FILE')),
          ('', 'initfiles', 0, _('initial file count to create'), _('COUNT'))],
         _('hg synthesize [OPTION].. DESCFILE'))
def synthesize(ui, repo, descpath, **opts):
    '''synthesize commits based on a model of an existing repository

    The model must have been generated by :hg:`analyze`. Commits will
    be generated randomly according to the probabilities described in
    the model. If --initfiles is set, the repository will be seeded with
    the given number files following the modeled repository's directory
    structure.

    When synthesizing new content, commit descriptions, and user
    names, words will be chosen randomly from a dictionary that is
    presumed to contain one word per line. Use --dict to specify the
    path to an alternate dictionary to use.
    '''
    try:
        fp = hg.openpath(ui, descpath)
    except Exception as err:
        raise error.Abort('%s: %s' % (descpath, err[0].strerror))
    desc = json.load(fp)
    fp.close()

    def cdf(l):
        if not l:
            return [], []
        vals, probs = zip(*sorted(l, key=lambda x: x[1], reverse=True))
        t = float(sum(probs, 0))
        s, cdfs = 0, []
        for v in probs:
            s += v
            cdfs.append(s / t)
        return vals, cdfs

    lineschanged = cdf(desc['lineschanged'])
    fileschanged = cdf(desc['fileschanged'])
    filesadded = cdf(desc['filesadded'])
    dirsadded = cdf(desc['dirsadded'])
    filesremoved = cdf(desc['filesremoved'])
    linelengths = cdf(desc['linelengths'])
    parents = cdf(desc['parents'])
    p1distance = cdf(desc['p1distance'])
    p2distance = cdf(desc['p2distance'])
    interarrival = cdf(desc['interarrival'])
    linesinfilesadded = cdf(desc['linesinfilesadded'])
    tzoffset = cdf(desc['tzoffset'])

    dictfile = opts.get('dict') or '/usr/share/dict/words'
    try:
        fp = open(dictfile, 'rU')
    except IOError as err:
        raise error.Abort('%s: %s' % (dictfile, err.strerror))
    words = fp.read().splitlines()
    fp.close()

    initdirs = {}
    if desc['initdirs']:
        for k, v in desc['initdirs']:
            initdirs[k.encode('utf-8').replace('.hg', '_hg')] = v
        initdirs = renamedirs(initdirs, words)
    initdirscdf = cdf(initdirs)

    def pick(cdf):
        return cdf[0][bisect.bisect_left(cdf[1], random.random())]

    def pickpath():
        return os.path.join(pick(initdirscdf), random.choice(words))

    def makeline(minimum=0):
        total = max(minimum, pick(linelengths))
        c, l = 0, []
        while c < total:
            w = random.choice(words)
            c += len(w) + 1
            l.append(w)
        return ' '.join(l)

    wlock = repo.wlock()
    lock = repo.lock()

    nevertouch = {'.hgsub', '.hgignore', '.hgtags'}

    _synthesizing = _('synthesizing')
    _files = _('initial files')
    _changesets = _('changesets')

    # Synthesize a single initial revision adding files to the repo according
    # to the modeled directory structure.
    initcount = int(opts['initfiles'])
    if initcount and initdirs:
        pctx = repo['.']
        dirs = set(pctx.dirs())
        files = {}

        def validpath(path):
            # Don't pick filenames which are already directory names.
            if path in dirs:
                return False
            # Don't pick directories which were used as file names.
            while path:
                if path in files:
                    return False
                path = os.path.dirname(path)
            return True

        progress = ui.makeprogress(_synthesizing, unit=_files, total=initcount)
        for i in xrange(0, initcount):
            progress.update(i)

            path = pickpath()
            while not validpath(path):
                path = pickpath()
            data = '%s contents\n' % path
            files[path] = data
            dir = os.path.dirname(path)
            while dir and dir not in dirs:
                dirs.add(dir)
                dir = os.path.dirname(dir)

        def filectxfn(repo, memctx, path):
            return context.memfilectx(repo, memctx, path, files[path])

        progress.complete()
        message = 'synthesized wide repo with %d files' % (len(files),)
        mc = context.memctx(repo, [pctx.node(), nullid], message,
                            files, filectxfn, ui.username(),
                            '%d %d' % dateutil.makedate())
        initnode = mc.commit()
        if ui.debugflag:
            hexfn = hex
        else:
            hexfn = short
        ui.status(_('added commit %s with %d files\n')
                  % (hexfn(initnode), len(files)))

    # Synthesize incremental revisions to the repository, adding repo depth.
    count = int(opts['count'])
    heads = set(map(repo.changelog.rev, repo.heads()))
    progress = ui.makeprogress(_synthesizing, unit=_changesets, total=count)
    for i in xrange(count):
        progress.update(i)

        node = repo.changelog.node
        revs = len(repo)

        def pickhead(heads, distance):
            if heads:
                lheads = sorted(heads)
                rev = revs - min(pick(distance), revs)
                if rev < lheads[-1]:
                    rev = lheads[bisect.bisect_left(lheads, rev)]
                else:
                    rev = lheads[-1]
                return rev, node(rev)
            return nullrev, nullid

        r1 = revs - min(pick(p1distance), revs)
        p1 = node(r1)

        # the number of heads will grow without bound if we use a pure
        # model, so artificially constrain their proliferation
        toomanyheads = len(heads) > random.randint(1, 20)
        if p2distance[0] and (pick(parents) == 2 or toomanyheads):
            r2, p2 = pickhead(heads.difference([r1]), p2distance)
        else:
            r2, p2 = nullrev, nullid

        pl = [p1, p2]
        pctx = repo[r1]
        mf = pctx.manifest()
        mfk = mf.keys()
        changes = {}
        if mfk:
            for __ in xrange(pick(fileschanged)):
                for __ in xrange(10):
                    fctx = pctx.filectx(random.choice(mfk))
                    path = fctx.path()
                    if not (path in nevertouch or fctx.isbinary() or
                            'l' in fctx.flags()):
                        break
                lines = fctx.data().splitlines()
                add, remove = pick(lineschanged)
                for __ in xrange(remove):
                    if not lines:
                        break
                    del lines[random.randrange(0, len(lines))]
                for __ in xrange(add):
                    lines.insert(random.randint(0, len(lines)), makeline())
                path = fctx.path()
                changes[path] = '\n'.join(lines) + '\n'
            for __ in xrange(pick(filesremoved)):
                for __ in xrange(10):
                    path = random.choice(mfk)
                    if path not in changes:
                        break
        if filesadded:
            dirs = list(pctx.dirs())
            dirs.insert(0, '')
        for __ in xrange(pick(filesadded)):
            pathstr = ''
            while pathstr in dirs:
                path = [random.choice(dirs)]
                if pick(dirsadded):
                    path.append(random.choice(words))
                path.append(random.choice(words))
                pathstr = '/'.join(filter(None, path))
            data = '\n'.join(makeline()
                             for __ in xrange(pick(linesinfilesadded))) + '\n'
            changes[pathstr] = data
        def filectxfn(repo, memctx, path):
            if path not in changes:
                return None
            return context.memfilectx(repo, memctx, path, changes[path])
        if not changes:
            continue
        if revs:
            date = repo['tip'].date()[0] + pick(interarrival)
        else:
            date = time.time() - (86400 * count)
        # dates in mercurial must be positive, fit in 32-bit signed integers.
        date = min(0x7fffffff, max(0, date))
        user = random.choice(words) + '@' + random.choice(words)
        mc = context.memctx(repo, pl, makeline(minimum=2),
                            sorted(changes),
                            filectxfn, user, '%d %d' % (date, pick(tzoffset)))
        newnode = mc.commit()
        heads.add(repo.changelog.rev(newnode))
        heads.discard(r1)
        heads.discard(r2)
    progress.complete()

    lock.release()
    wlock.release()

def renamedirs(dirs, words):
    '''Randomly rename the directory names in the per-dir file count dict.'''
    wordgen = itertools.cycle(words)
    replacements = {'': ''}
    def rename(dirpath):
        '''Recursively rename the directory and all path prefixes.

        The mapping from path to renamed path is stored for all path prefixes
        as in dynamic programming, ensuring linear runtime and consistent
        renaming regardless of iteration order through the model.
        '''
        if dirpath in replacements:
            return replacements[dirpath]
        head, _ = os.path.split(dirpath)
        if head:
            head = rename(head)
        else:
            head = ''
        renamed = os.path.join(head, next(wordgen))
        replacements[dirpath] = renamed
        return renamed
    result = []
    for dirpath, count in dirs.iteritems():
        result.append([rename(dirpath.lstrip(os.sep)), count])
    return result