Mercurial > hg-stable
view mercurial/profiling.py @ 30745:c1b7b2285522
revlog: flag processor
Add the ability for revlog objects to process revision flags and apply
registered transforms on read/write operations.
This patch introduces:
- the 'revlog._processflags()' method that looks at revision flags and applies
flag processors registered on them. Due to the need to handle non-commutative
operations, flag transforms are applied in stable order but the order in which
the transforms are applied is reversed between read and write operations.
- the 'addflagprocessor()' method allowing to register processors on flags.
Flag processors are defined as a 3-tuple of (read, write, raw) functions to be
applied depending on the operation being performed.
- an update on 'revlog.addrevision()' behavior. The current flagprocessor design
relies on extensions to wrap around 'addrevision()' to set flags on revision
data, and on the flagprocessor to perform the actual transformation of its
contents. In the lfs case, this means we need to process flags before we meet
the 2GB size check, leading to performing some operations before it happens:
- if flags are set on the revision data, we assume some extensions might be
modifying the contents using the flag processor next, and we compute the
node for the original revision data (still allowing extension to override
the node by wrapping around 'addrevision()').
- we then invoke the flag processor to apply registered transforms (in lfs's
case, drastically reducing the size of large blobs).
- finally, we proceed with the 2GB size check.
Note: In the case a cachedelta is passed to 'addrevision()' and we detect the
flag processor modified the revision data, we chose to trust the flag processor
and drop the cachedelta.
author | Remi Chaintron <remi@fb.com> |
---|---|
date | Tue, 10 Jan 2017 16:15:21 +0000 |
parents | 69acfd2ca11e |
children | 6a70cf94d1b5 |
line wrap: on
line source
# profiling.py - profiling functions # # Copyright 2016 Gregory Szorc <gregory.szorc@gmail.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import, print_function import contextlib import time from .i18n import _ from . import ( error, pycompat, util, ) @contextlib.contextmanager def lsprofile(ui, fp): format = ui.config('profiling', 'format', default='text') field = ui.config('profiling', 'sort', default='inlinetime') limit = ui.configint('profiling', 'limit', default=30) climit = ui.configint('profiling', 'nested', default=0) if format not in ['text', 'kcachegrind']: ui.warn(_("unrecognized profiling format '%s'" " - Ignored\n") % format) format = 'text' try: from . import lsprof except ImportError: raise error.Abort(_( 'lsprof not available - install from ' 'http://codespeak.net/svn/user/arigo/hack/misc/lsprof/')) p = lsprof.Profiler() p.enable(subcalls=True) try: yield finally: p.disable() if format == 'kcachegrind': from . import lsprofcalltree calltree = lsprofcalltree.KCacheGrind(p) calltree.output(fp) else: # format == 'text' stats = lsprof.Stats(p.getstats()) stats.sort(field) stats.pprint(limit=limit, file=fp, climit=climit) @contextlib.contextmanager def flameprofile(ui, fp): try: from flamegraph import flamegraph except ImportError: raise error.Abort(_( 'flamegraph not available - install from ' 'https://github.com/evanhempel/python-flamegraph')) # developer config: profiling.freq freq = ui.configint('profiling', 'freq', default=1000) filter_ = None collapse_recursion = True thread = flamegraph.ProfileThread(fp, 1.0 / freq, filter_, collapse_recursion) start_time = time.clock() try: thread.start() yield finally: thread.stop() thread.join() print('Collected %d stack frames (%d unique) in %2.2f seconds.' % ( time.clock() - start_time, thread.num_frames(), thread.num_frames(unique=True))) @contextlib.contextmanager def statprofile(ui, fp): from . import statprof freq = ui.configint('profiling', 'freq', default=1000) if freq > 0: # Cannot reset when profiler is already active. So silently no-op. if statprof.state.profile_level == 0: statprof.reset(freq) else: ui.warn(_("invalid sampling frequency '%s' - ignoring\n") % freq) statprof.start(mechanism='thread') try: yield finally: data = statprof.stop() profformat = ui.config('profiling', 'statformat', 'hotpath') formats = { 'byline': statprof.DisplayFormats.ByLine, 'bymethod': statprof.DisplayFormats.ByMethod, 'hotpath': statprof.DisplayFormats.Hotpath, 'json': statprof.DisplayFormats.Json, } if profformat in formats: displayformat = formats[profformat] else: ui.warn(_('unknown profiler output format: %s\n') % profformat) displayformat = statprof.DisplayFormats.Hotpath statprof.display(fp, data=data, format=displayformat) @contextlib.contextmanager def profile(ui): """Start profiling. Profiling is active when the context manager is active. When the context manager exits, profiling results will be written to the configured output. """ profiler = pycompat.osgetenv('HGPROF') if profiler is None: profiler = ui.config('profiling', 'type', default='stat') if profiler not in ('ls', 'stat', 'flame'): ui.warn(_("unrecognized profiler '%s' - ignored\n") % profiler) profiler = 'stat' output = ui.config('profiling', 'output') if output == 'blackbox': fp = util.stringio() elif output: path = ui.expandpath(output) fp = open(path, 'wb') else: fp = ui.ferr try: if profiler == 'ls': proffn = lsprofile elif profiler == 'flame': proffn = flameprofile else: proffn = statprofile with proffn(ui, fp): yield finally: if output: if output == 'blackbox': val = 'Profile:\n%s' % fp.getvalue() # ui.log treats the input as a format string, # so we need to escape any % signs. val = val.replace('%', '%%') ui.log('profile', val) fp.close() @contextlib.contextmanager def maybeprofile(ui): """Profile if enabled, else do nothing. This context manager can be used to optionally profile if profiling is enabled. Otherwise, it does nothing. The purpose of this context manager is to make calling code simpler: just use a single code path for calling into code you may want to profile and this function determines whether to start profiling. """ if ui.configbool('profiling', 'enabled'): with profile(ui): yield else: yield