Mercurial > hg-stable
view mercurial/pvec.py @ 25568:c1ff82daed62
ui: flush stderr after printing a non-chained exception for Windows
There were consistent test failures in test-bad-extension.t, because Windows
buffers stderr when redirected to a file (per the comment in ui.write_err()).
That resulted in failures like this:
--- c:/Users/Matt/Projects/hg/tests/test-bad-extension.t
+++ c:/Users/Matt/Projects/hg/tests/test-bad-extension.t.err
@@ -23,11 +23,11 @@
Traceback (most recent call last):
Exception: bit bucket overflow
*** failed to import extension badext2: No module named badext2
- Traceback (most recent call last):
- ImportError: No module named badext2
hg help [-ec] [TOPIC]
show help for a given topic or a help overview
+ Traceback (most recent call last):
+ ImportError: No module named badext2
show traceback for ImportError of hgext.name if debug is set
(note that --debug option isn't applied yet when loading extensions)
Instead of inserting another flush immediately after the print, to go along with
the one recently added prior to the print (see 3ff4b07412ad), funnel the output
through ui.write_err(). The flush prior to printing the traceback only mentions
that stdout needs to be flushed, and only stderr needs to be flushed after
printing the traceback. ui.write_err() does both for us without needing to
redocument the quirky Windows behavior. It will also clear any progress bar.
author | Matt Harbison <matt_harbison@yahoo.com> |
---|---|
date | Fri, 12 Jun 2015 22:09:41 -0400 |
parents | bcc319d936a3 |
children | 983e93d88193 |
line wrap: on
line source
# pvec.py - probabilistic vector clocks for Mercurial # # Copyright 2012 Matt Mackall <mpm@selenic.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. ''' A "pvec" is a changeset property based on the theory of vector clocks that can be compared to discover relatedness without consulting a graph. This can be useful for tasks like determining how a disconnected patch relates to a repository. Currently a pvec consist of 448 bits, of which 24 are 'depth' and the remainder are a bit vector. It is represented as a 70-character base85 string. Construction: - a root changeset has a depth of 0 and a bit vector based on its hash - a normal commit has a changeset where depth is increased by one and one bit vector bit is flipped based on its hash - a merge changeset pvec is constructed by copying changes from one pvec into the other to balance its depth Properties: - for linear changes, difference in depth is always <= hamming distance - otherwise, changes are probably divergent - when hamming distance is < 200, we can reliably detect when pvecs are near Issues: - hamming distance ceases to work over distances of ~ 200 - detecting divergence is less accurate when the common ancestor is very close to either revision or total distance is high - this could probably be improved by modeling the relation between delta and hdist Uses: - a patch pvec can be used to locate the nearest available common ancestor for resolving conflicts - ordering of patches can be established without a DAG - two head pvecs can be compared to determine whether push/pull/merge is needed and approximately how many changesets are involved - can be used to find a heuristic divergence measure between changesets on different branches ''' import base85, util from node import nullrev _size = 448 # 70 chars b85-encoded _bytes = _size / 8 _depthbits = 24 _depthbytes = _depthbits / 8 _vecbytes = _bytes - _depthbytes _vecbits = _vecbytes * 8 _radius = (_vecbits - 30) / 2 # high probability vectors are related def _bin(bs): '''convert a bytestring to a long''' v = 0 for b in bs: v = v * 256 + ord(b) return v def _str(v, l): bs = "" for p in xrange(l): bs = chr(v & 255) + bs v >>= 8 return bs def _split(b): '''depth and bitvec''' return _bin(b[:_depthbytes]), _bin(b[_depthbytes:]) def _join(depth, bitvec): return _str(depth, _depthbytes) + _str(bitvec, _vecbytes) def _hweight(x): c = 0 while x: if x & 1: c += 1 x >>= 1 return c _htab = [_hweight(x) for x in xrange(256)] def _hamming(a, b): '''find the hamming distance between two longs''' d = a ^ b c = 0 while d: c += _htab[d & 0xff] d >>= 8 return c def _mergevec(x, y, c): # Ideally, this function would be x ^ y ^ ancestor, but finding # ancestors is a nuisance. So instead we find the minimal number # of changes to balance the depth and hamming distance d1, v1 = x d2, v2 = y if d1 < d2: d1, d2, v1, v2 = d2, d1, v2, v1 hdist = _hamming(v1, v2) ddist = d1 - d2 v = v1 m = v1 ^ v2 # mask of different bits i = 1 if hdist > ddist: # if delta = 10 and hdist = 100, then we need to go up 55 steps # to the ancestor and down 45 changes = (hdist - ddist + 1) / 2 else: # must make at least one change changes = 1 depth = d1 + changes # copy changes from v2 if m: while changes: if m & i: v ^= i changes -= 1 i <<= 1 else: v = _flipbit(v, c) return depth, v def _flipbit(v, node): # converting bit strings to longs is slow bit = (hash(node) & 0xffffffff) % _vecbits return v ^ (1<<bit) def ctxpvec(ctx): '''construct a pvec for ctx while filling in the cache''' r = ctx.repo() if not util.safehasattr(r, "_pveccache"): r._pveccache = {} pvc = r._pveccache if ctx.rev() not in pvc: cl = r.changelog for n in xrange(ctx.rev() + 1): if n not in pvc: node = cl.node(n) p1, p2 = cl.parentrevs(n) if p1 == nullrev: # start with a 'random' vector at root pvc[n] = (0, _bin((node * 3)[:_vecbytes])) elif p2 == nullrev: d, v = pvc[p1] pvc[n] = (d + 1, _flipbit(v, node)) else: pvc[n] = _mergevec(pvc[p1], pvc[p2], node) bs = _join(*pvc[ctx.rev()]) return pvec(base85.b85encode(bs)) class pvec(object): def __init__(self, hashorctx): if isinstance(hashorctx, str): self._bs = hashorctx self._depth, self._vec = _split(base85.b85decode(hashorctx)) else: self._vec = ctxpvec(hashorctx) def __str__(self): return self._bs def __eq__(self, b): return self._vec == b._vec and self._depth == b._depth def __lt__(self, b): delta = b._depth - self._depth if delta < 0: return False # always correct if _hamming(self._vec, b._vec) > delta: return False return True def __gt__(self, b): return b < self def __or__(self, b): delta = abs(b._depth - self._depth) if _hamming(self._vec, b._vec) <= delta: return False return True def __sub__(self, b): if self | b: raise ValueError("concurrent pvecs") return self._depth - b._depth def distance(self, b): d = abs(b._depth - self._depth) h = _hamming(self._vec, b._vec) return max(d, h) def near(self, b): dist = abs(b.depth - self._depth) if dist > _radius or _hamming(self._vec, b._vec) > _radius: return False