Mercurial > hg-stable
view mercurial/worker.py @ 24355:ca4b89683078
bookmarks: reuse @number bookmark, if it refers changeset referred remotely
Before this patch, "@number" suffixed bookmark may be newly created at
each "hg pull" from the remote repository, if the bookmark in remote
repository diverges from one in local one.
This causes unexpected increase of "@number" suffixed bookmarks.
This patch reuses "@number" suffixed bookmark, if it refers the
changeset which is referred by the same bookmark in the remote
repository.
author | FUJIWARA Katsunori <foozy@lares.dti.ne.jp> |
---|---|
date | Tue, 17 Mar 2015 18:20:24 +0900 |
parents | b3e51675f98e |
children | 328739ea70c3 |
line wrap: on
line source
# worker.py - master-slave parallelism support # # Copyright 2013 Facebook, Inc. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from i18n import _ import errno, os, signal, sys, threading import util def countcpus(): '''try to count the number of CPUs on the system''' # posix try: n = int(os.sysconf('SC_NPROCESSORS_ONLN')) if n > 0: return n except (AttributeError, ValueError): pass # windows try: n = int(os.environ['NUMBER_OF_PROCESSORS']) if n > 0: return n except (KeyError, ValueError): pass return 1 def _numworkers(ui): s = ui.config('worker', 'numcpus') if s: try: n = int(s) if n >= 1: return n except ValueError: raise util.Abort(_('number of cpus must be an integer')) return min(max(countcpus(), 4), 32) if os.name == 'posix': _startupcost = 0.01 else: _startupcost = 1e30 def worthwhile(ui, costperop, nops): '''try to determine whether the benefit of multiple processes can outweigh the cost of starting them''' linear = costperop * nops workers = _numworkers(ui) benefit = linear - (_startupcost * workers + linear / workers) return benefit >= 0.15 def worker(ui, costperarg, func, staticargs, args): '''run a function, possibly in parallel in multiple worker processes. returns a progress iterator costperarg - cost of a single task func - function to run staticargs - arguments to pass to every invocation of the function args - arguments to split into chunks, to pass to individual workers ''' if worthwhile(ui, costperarg, len(args)): return _platformworker(ui, func, staticargs, args) return func(*staticargs + (args,)) def _posixworker(ui, func, staticargs, args): rfd, wfd = os.pipe() workers = _numworkers(ui) oldhandler = signal.getsignal(signal.SIGINT) signal.signal(signal.SIGINT, signal.SIG_IGN) pids, problem = [], [0] for pargs in partition(args, workers): pid = os.fork() if pid == 0: signal.signal(signal.SIGINT, oldhandler) try: os.close(rfd) for i, item in func(*(staticargs + (pargs,))): os.write(wfd, '%d %s\n' % (i, item)) os._exit(0) except KeyboardInterrupt: os._exit(255) # other exceptions are allowed to propagate, we rely # on lock.py's pid checks to avoid release callbacks pids.append(pid) pids.reverse() os.close(wfd) fp = os.fdopen(rfd, 'rb', 0) def killworkers(): # if one worker bails, there's no good reason to wait for the rest for p in pids: try: os.kill(p, signal.SIGTERM) except OSError, err: if err.errno != errno.ESRCH: raise def waitforworkers(): for _pid in pids: st = _exitstatus(os.wait()[1]) if st and not problem[0]: problem[0] = st killworkers() t = threading.Thread(target=waitforworkers) t.start() def cleanup(): signal.signal(signal.SIGINT, oldhandler) t.join() status = problem[0] if status: if status < 0: os.kill(os.getpid(), -status) sys.exit(status) try: for line in fp: l = line.split(' ', 1) yield int(l[0]), l[1][:-1] except: # re-raises killworkers() cleanup() raise cleanup() def _posixexitstatus(code): '''convert a posix exit status into the same form returned by os.spawnv returns None if the process was stopped instead of exiting''' if os.WIFEXITED(code): return os.WEXITSTATUS(code) elif os.WIFSIGNALED(code): return -os.WTERMSIG(code) if os.name != 'nt': _platformworker = _posixworker _exitstatus = _posixexitstatus def partition(lst, nslices): '''partition a list into N slices of equal size''' n = len(lst) chunk, slop = n / nslices, n % nslices end = 0 for i in xrange(nslices): start = end end = start + chunk if slop: end += 1 slop -= 1 yield lst[start:end]