rust/README.rst
author Gregory Szorc <gregory.szorc@gmail.com>
Wed, 05 Sep 2018 09:09:57 -0700
changeset 39654 d292328e0143
parent 35569 964212780daf
child 44114 8a3b045d9086
permissions -rw-r--r--
exchangev2: fetch manifest revisions Now that the server has support for retrieving manifest data, we can implement the client bits to call it. We teach the changeset fetching code to capture the manifest revisions that are encountered on incoming changesets. We then feed this into a new function which filters out known manifests and then batches up manifest data requests to the server. This is different from the previous wire protocol in a few notable ways. First, the client fetches manifest data separately and explicitly. Before, we'd ask the server for data pertaining to some changesets (via a "getbundle" command) and manifests (and files) would be sent automatically. Providing an API for looking up just manifest data separately gives clients much more flexibility for manifest management. For example, a client may choose to only fetch manifest data on demand instead of prefetching it (i.e. partial clone). Second, we send N commands to the server for manifest retrieval instead of 1. This property has a few nice side-effects. One is that the deterministic nature of the requests lends itself to server-side caching. For example, say the remote has 50,000 manifests. If the server is configured to cache responses, each time a new commit arrives, you will have a cache miss and need to regenerate all outgoing data. But if you makes N requests requesting 10,000 manifests each, a new commit will still yield cache hits on the initial, unchanged manifest batches/requests. A derived benefit from these properties is that resumable clone is conceptually simpler to implement. When making a monolithic request for all of the repository data, recovering from an interrupted clone is hard because the server was in the driver's seat and was maintaining state about all the data that needed transferred. With the client driving fetching, the client can persist the set of unfetched entities and retry/resume a fetch if something goes wrong. Or we can fetch all data N changesets at a time and slowly build up a repository. This approach is drastically easier to implement when we have server APIs exposing low-level repository primitives (such as manifests and files). We don't yet support tree manifests. But it should be possible to implement that with the existing wire protocol command. Differential Revision: https://phab.mercurial-scm.org/D4489

===================
Mercurial Rust Code
===================

This directory contains various Rust code for the Mercurial project.

The top-level ``Cargo.toml`` file defines a workspace containing
all primary Mercurial crates.

Building
========

To build the Rust components::

   $ cargo build

If you prefer a non-debug / release configuration::

   $ cargo build --release

Features
--------

The following Cargo features are available:

localdev (default)
   Produce files that work with an in-source-tree build.

   In this mode, the build finds and uses a ``python2.7`` binary from
   ``PATH``. The ``hg`` binary assumes it runs from ``rust/target/<target>hg``
   and it finds Mercurial files at ``dirname($0)/../../../``.

Build Mechanism
---------------

The produced ``hg`` binary is *bound* to a CPython installation. The
binary links against and loads a CPython library that is discovered
at build time (by a ``build.rs`` Cargo build script). The Python
standard library defined by this CPython installation is also used.

Finding the appropriate CPython installation to use is done by
the ``python27-sys`` crate's ``build.rs``. Its search order is::

1. ``PYTHON_SYS_EXECUTABLE`` environment variable.
2. ``python`` executable on ``PATH``
3. ``python2`` executable on ``PATH``
4. ``python2.7`` executable on ``PATH``

Additional verification of the found Python will be performed by our
``build.rs`` to ensure it meets Mercurial's requirements.

Details about the build-time configured Python are built into the
produced ``hg`` binary. This means that a built ``hg`` binary is only
suitable for a specific, well-defined role. These roles are controlled
by Cargo features (see above).

Running
=======

The ``hgcli`` crate produces an ``hg`` binary. You can run this binary
via ``cargo run``::

   $ cargo run --manifest-path hgcli/Cargo.toml

Or directly::

   $ target/debug/hg
   $ target/release/hg

You can also run the test harness with this binary::

   $ ./run-tests.py --with-hg ../rust/target/debug/hg

.. note::

   Integration with the test harness is still preliminary. Remember to
   ``cargo build`` after changes because the test harness doesn't yet
   automatically build Rust code.