mercurial/peer.py
author Gregory Szorc <gregory.szorc@gmail.com>
Tue, 10 Jan 2017 23:37:08 -0800
changeset 30766 d7bf7d2bd5ab
parent 29216 ead25aa27a43
child 33786 e2fc2122029c
permissions -rw-r--r--
hgweb: support Content Security Policy Content-Security-Policy (CSP) is a web security feature that allows servers to declare what loaded content is allowed to do. For example, a policy can prevent loading of images, JavaScript, CSS, etc unless the source of that content is whitelisted (by hostname, URI scheme, hashes of content, etc). It's a nifty security feature that provides extra mitigation against some attacks, notably XSS. Mitigation against these attacks is important for Mercurial because hgweb renders repository data, which is commonly untrusted. While we make attempts to escape things, etc, there's the possibility that malicious data could be injected into the site content. If this happens today, the full power of the web browser is available to that malicious content. A restrictive CSP policy (defined by the server operator and sent in an HTTP header which is outside the control of malicious content), could restrict browser capabilities and mitigate security problems posed by malicious data. CSP works by emitting an HTTP header declaring the policy that browsers should apply. Ideally, this header would be emitted by a layer above Mercurial (likely the HTTP server doing the WSGI "proxying"). This works for some CSP policies, but not all. For example, policies to allow inline JavaScript may require setting a "nonce" attribute on <script>. This attribute value must be unique and non-guessable. And, the value must be present in the HTTP header and the HTML body. This means that coordinating the value between Mercurial and another HTTP server could be difficult: it is much easier to generate and emit the nonce in a central location. This commit introduces support for emitting a Content-Security-Policy header from hgweb. A config option defines the header value. If present, the header is emitted. A special "%nonce%" syntax in the value triggers generation of a nonce and inclusion in <script> elements in templates. The inclusion of a nonce does not occur unless "%nonce%" is present. This makes this commit completely backwards compatible and the feature opt-in. The nonce is a type 4 UUID, which is the flavor that is randomly generated. It has 122 random bits, which should be plenty to satisfy the guarantees of a nonce.

# peer.py - repository base classes for mercurial
#
# Copyright 2005, 2006 Matt Mackall <mpm@selenic.com>
# Copyright 2006 Vadim Gelfer <vadim.gelfer@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import

from .i18n import _
from . import (
    error,
    util,
)

# abstract batching support

class future(object):
    '''placeholder for a value to be set later'''
    def set(self, value):
        if util.safehasattr(self, 'value'):
            raise error.RepoError("future is already set")
        self.value = value

class batcher(object):
    '''base class for batches of commands submittable in a single request

    All methods invoked on instances of this class are simply queued and
    return a a future for the result. Once you call submit(), all the queued
    calls are performed and the results set in their respective futures.
    '''
    def __init__(self):
        self.calls = []
    def __getattr__(self, name):
        def call(*args, **opts):
            resref = future()
            self.calls.append((name, args, opts, resref,))
            return resref
        return call
    def submit(self):
        raise NotImplementedError()

class iterbatcher(batcher):

    def submit(self):
        raise NotImplementedError()

    def results(self):
        raise NotImplementedError()

class localbatch(batcher):
    '''performs the queued calls directly'''
    def __init__(self, local):
        batcher.__init__(self)
        self.local = local
    def submit(self):
        for name, args, opts, resref in self.calls:
            resref.set(getattr(self.local, name)(*args, **opts))

class localiterbatcher(iterbatcher):
    def __init__(self, local):
        super(iterbatcher, self).__init__()
        self.local = local

    def submit(self):
        # submit for a local iter batcher is a noop
        pass

    def results(self):
        for name, args, opts, resref in self.calls:
            yield getattr(self.local, name)(*args, **opts)

def batchable(f):
    '''annotation for batchable methods

    Such methods must implement a coroutine as follows:

    @batchable
    def sample(self, one, two=None):
        # Handle locally computable results first:
        if not one:
            yield "a local result", None
        # Build list of encoded arguments suitable for your wire protocol:
        encargs = [('one', encode(one),), ('two', encode(two),)]
        # Create future for injection of encoded result:
        encresref = future()
        # Return encoded arguments and future:
        yield encargs, encresref
        # Assuming the future to be filled with the result from the batched
        # request now. Decode it:
        yield decode(encresref.value)

    The decorator returns a function which wraps this coroutine as a plain
    method, but adds the original method as an attribute called "batchable",
    which is used by remotebatch to split the call into separate encoding and
    decoding phases.
    '''
    def plain(*args, **opts):
        batchable = f(*args, **opts)
        encargsorres, encresref = next(batchable)
        if not encresref:
            return encargsorres # a local result in this case
        self = args[0]
        encresref.set(self._submitone(f.func_name, encargsorres))
        return next(batchable)
    setattr(plain, 'batchable', f)
    return plain

class peerrepository(object):

    def batch(self):
        return localbatch(self)

    def iterbatch(self):
        """Batch requests but allow iterating over the results.

        This is to allow interleaving responses with things like
        progress updates for clients.
        """
        return localiterbatcher(self)

    def capable(self, name):
        '''tell whether repo supports named capability.
        return False if not supported.
        if boolean capability, return True.
        if string capability, return string.'''
        caps = self._capabilities()
        if name in caps:
            return True
        name_eq = name + '='
        for cap in caps:
            if cap.startswith(name_eq):
                return cap[len(name_eq):]
        return False

    def requirecap(self, name, purpose):
        '''raise an exception if the given capability is not present'''
        if not self.capable(name):
            raise error.CapabilityError(
                _('cannot %s; remote repository does not '
                  'support the %r capability') % (purpose, name))

    def local(self):
        '''return peer as a localrepo, or None'''
        return None

    def peer(self):
        return self

    def canpush(self):
        return True

    def close(self):
        pass