view mercurial/ancestor.py @ 5042:f191bc3916f7

merge: do early copy to deal with issue636 Without copies/renames, merges source names are 1:1 with their targets. Copies and renames introduce the possibility that there will be two merges with the same input but different output. By doing the copy to the destination name before the merge, the actual merge becomes 1:1 again, and no source is the input to two different merges. - add a preliminary scan to applyupdates to do copies - for the merge action, pass the old name (for finding ancestors) and the new name (for input to the merge) to filemerge - eliminate the old post-merge copy - lookup file contents from new name in filemerge - pass new name to external merge helper - report merge failure at new name - add a test
author Matt Mackall <mpm@selenic.com>
date Wed, 01 Aug 2007 12:33:12 -0500
parents eb0b4a2d70a9
children 20aa460a52b6
line wrap: on
line source

# ancestor.py - generic DAG ancestor algorithm for mercurial
#
# Copyright 2006 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms
# of the GNU General Public License, incorporated herein by reference.

import heapq

def ancestor(a, b, pfunc):
    """
    return the least common ancestor of nodes a and b or None if there
    is no such ancestor.

    pfunc must return a list of parent vertices
    """

    if a == b:
        return a

    # find depth from root of all ancestors
    visit = [a, b]
    depth = {}
    while visit:
        vertex = visit[-1]
        pl = pfunc(vertex)
        if not pl:
            depth[vertex] = 0
            visit.pop()
        else:
            for p in pl:
                if p == a or p == b: # did we find a or b as a parent?
                    return p # we're done
                if p not in depth:
                    visit.append(p)
            if visit[-1] == vertex:
                depth[vertex] = min([depth[p] for p in pl]) - 1
                visit.pop()

    # traverse ancestors in order of decreasing distance from root
    def ancestors(vertex):
        h = [(depth[vertex], vertex)]
        seen = {}
        while h:
            d, n = heapq.heappop(h)
            if n not in seen:
                seen[n] = 1
                yield (d, n)
                for p in pfunc(n):
                    heapq.heappush(h, (depth[p], p))

    def generations(vertex):
        sg, s = None, {}
        for g, v in ancestors(vertex):
            if g != sg:
                if sg:
                    yield sg, s
                sg, s = g, {v:1}
            else:
                s[v] = 1
        yield sg, s

    x = generations(a)
    y = generations(b)
    gx = x.next()
    gy = y.next()

    # increment each ancestor list until it is closer to root than
    # the other, or they match
    try:
        while 1:
            if gx[0] == gy[0]:
                for v in gx[1]:
                    if v in gy[1]:
                        return v
                gy = y.next()
                gx = x.next()
            elif gx[0] > gy[0]:
                gy = y.next()
            else:
                gx = x.next()
    except StopIteration:
        return None