Mercurial > hg-stable
view mercurial/similar.py @ 52182:fa58f4f97337 stable tip
ci: shard the test run on mac os X
This should comes with some benefit:
- spread the load across more runner,
- reduce the real-time CI run,
- reduce the "retry" run when we need them.
We start with the Mac jobs, but that would be tremendously useful for Windows
too.
For linux, we need to reduce the startup overhead for this to be worth it.
Building smaller image and speeding up clone should help with that.
author | Pierre-Yves David <pierre-yves.david@octobus.net> |
---|---|
date | Fri, 08 Nov 2024 17:08:11 +0100 |
parents | f4733654f144 |
children |
line wrap: on
line source
# similar.py - mechanisms for finding similar files # # Copyright 2005-2007 Olivia Mackall <olivia@selenic.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import annotations from .i18n import _ from . import ( mdiff, ) def _findexactmatches(repo, added, removed): """find renamed files that have no changes Takes a list of new filectxs and a list of removed filectxs, and yields (before, after) tuples of exact matches. """ # Build table of removed files: {hash(fctx.data()): [fctx, ...]}. # We use hash() to discard fctx.data() from memory. hashes = {} progress = repo.ui.makeprogress( _(b'searching for exact renames'), total=(len(added) + len(removed)), unit=_(b'files'), ) for fctx in removed: progress.increment() h = hash(fctx.data()) if h not in hashes: hashes[h] = [fctx] else: hashes[h].append(fctx) # For each added file, see if it corresponds to a removed file. for fctx in added: progress.increment() adata = fctx.data() h = hash(adata) for rfctx in hashes.get(h, []): # compare between actual file contents for exact identity if adata == rfctx.data(): yield (rfctx, fctx) break # Done progress.complete() def _ctxdata(fctx): # lazily load text orig = fctx.data() return orig, mdiff.splitnewlines(orig) def _score(fctx, otherdata): orig, lines = otherdata text = fctx.data() # mdiff.blocks() returns blocks of matching lines # count the number of bytes in each equal = 0 matches = mdiff.blocks(text, orig) for x1, x2, y1, y2 in matches: for line in lines[y1:y2]: equal += len(line) lengths = len(text) + len(orig) return equal * 2.0 / lengths def score(fctx1, fctx2): return _score(fctx1, _ctxdata(fctx2)) def _findsimilarmatches(repo, added, removed, threshold): """find potentially renamed files based on similar file content Takes a list of new filectxs and a list of removed filectxs, and yields (before, after, score) tuples of partial matches. """ copies = {} progress = repo.ui.makeprogress( _(b'searching for similar files'), unit=_(b'files'), total=len(removed) ) for r in removed: progress.increment() data = None for a in added: bestscore = copies.get(a, (None, threshold))[1] if data is None: data = _ctxdata(r) myscore = _score(a, data) if myscore > bestscore: copies[a] = (r, myscore) progress.complete() for dest, v in copies.items(): source, bscore = v yield source, dest, bscore def _dropempty(fctxs): return [x for x in fctxs if x.size() > 0] def findrenames(repo, added, removed, threshold): '''find renamed files -- yields (before, after, score) tuples''' wctx = repo[None] pctx = wctx.p1() # Zero length files will be frequently unrelated to each other, and # tracking the deletion/addition of such a file will probably cause more # harm than good. We strip them out here to avoid matching them later on. addedfiles = _dropempty(wctx[fp] for fp in sorted(added)) removedfiles = _dropempty(pctx[fp] for fp in sorted(removed) if fp in pctx) # Find exact matches. matchedfiles = set() for a, b in _findexactmatches(repo, addedfiles, removedfiles): matchedfiles.add(b) yield (a.path(), b.path(), 1.0) # If the user requested similar files to be matched, search for them also. if threshold < 1.0: addedfiles = [x for x in addedfiles if x not in matchedfiles] for a, b, score in _findsimilarmatches( repo, addedfiles, removedfiles, threshold ): yield (a.path(), b.path(), score)