view mercurial/profiling.py @ 30708:011122b3b1c4

hgweb: link to raw-file on annotation page (BC) Every other template has the "raw" link load "raw-file." However, fileannotate.tmpl's "raw" link loads "raw-annotate." This feels inconsistent and wrong. As far as I can tell, linking to the "raw annotate" view has occurred since 2006.
author Gregory Szorc <gregory.szorc@gmail.com>
date Wed, 28 Dec 2016 15:48:17 -0700
parents 69acfd2ca11e
children 6a70cf94d1b5
line wrap: on
line source

# profiling.py - profiling functions
#
# Copyright 2016 Gregory Szorc <gregory.szorc@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import, print_function

import contextlib
import time

from .i18n import _
from . import (
    error,
    pycompat,
    util,
)

@contextlib.contextmanager
def lsprofile(ui, fp):
    format = ui.config('profiling', 'format', default='text')
    field = ui.config('profiling', 'sort', default='inlinetime')
    limit = ui.configint('profiling', 'limit', default=30)
    climit = ui.configint('profiling', 'nested', default=0)

    if format not in ['text', 'kcachegrind']:
        ui.warn(_("unrecognized profiling format '%s'"
                    " - Ignored\n") % format)
        format = 'text'

    try:
        from . import lsprof
    except ImportError:
        raise error.Abort(_(
            'lsprof not available - install from '
            'http://codespeak.net/svn/user/arigo/hack/misc/lsprof/'))
    p = lsprof.Profiler()
    p.enable(subcalls=True)
    try:
        yield
    finally:
        p.disable()

        if format == 'kcachegrind':
            from . import lsprofcalltree
            calltree = lsprofcalltree.KCacheGrind(p)
            calltree.output(fp)
        else:
            # format == 'text'
            stats = lsprof.Stats(p.getstats())
            stats.sort(field)
            stats.pprint(limit=limit, file=fp, climit=climit)

@contextlib.contextmanager
def flameprofile(ui, fp):
    try:
        from flamegraph import flamegraph
    except ImportError:
        raise error.Abort(_(
            'flamegraph not available - install from '
            'https://github.com/evanhempel/python-flamegraph'))
    # developer config: profiling.freq
    freq = ui.configint('profiling', 'freq', default=1000)
    filter_ = None
    collapse_recursion = True
    thread = flamegraph.ProfileThread(fp, 1.0 / freq,
                                      filter_, collapse_recursion)
    start_time = time.clock()
    try:
        thread.start()
        yield
    finally:
        thread.stop()
        thread.join()
        print('Collected %d stack frames (%d unique) in %2.2f seconds.' % (
            time.clock() - start_time, thread.num_frames(),
            thread.num_frames(unique=True)))

@contextlib.contextmanager
def statprofile(ui, fp):
    from . import statprof

    freq = ui.configint('profiling', 'freq', default=1000)
    if freq > 0:
        # Cannot reset when profiler is already active. So silently no-op.
        if statprof.state.profile_level == 0:
            statprof.reset(freq)
    else:
        ui.warn(_("invalid sampling frequency '%s' - ignoring\n") % freq)

    statprof.start(mechanism='thread')

    try:
        yield
    finally:
        data = statprof.stop()

        profformat = ui.config('profiling', 'statformat', 'hotpath')

        formats = {
            'byline': statprof.DisplayFormats.ByLine,
            'bymethod': statprof.DisplayFormats.ByMethod,
            'hotpath': statprof.DisplayFormats.Hotpath,
            'json': statprof.DisplayFormats.Json,
        }

        if profformat in formats:
            displayformat = formats[profformat]
        else:
            ui.warn(_('unknown profiler output format: %s\n') % profformat)
            displayformat = statprof.DisplayFormats.Hotpath

        statprof.display(fp, data=data, format=displayformat)

@contextlib.contextmanager
def profile(ui):
    """Start profiling.

    Profiling is active when the context manager is active. When the context
    manager exits, profiling results will be written to the configured output.
    """
    profiler = pycompat.osgetenv('HGPROF')
    if profiler is None:
        profiler = ui.config('profiling', 'type', default='stat')
    if profiler not in ('ls', 'stat', 'flame'):
        ui.warn(_("unrecognized profiler '%s' - ignored\n") % profiler)
        profiler = 'stat'

    output = ui.config('profiling', 'output')

    if output == 'blackbox':
        fp = util.stringio()
    elif output:
        path = ui.expandpath(output)
        fp = open(path, 'wb')
    else:
        fp = ui.ferr

    try:
        if profiler == 'ls':
            proffn = lsprofile
        elif profiler == 'flame':
            proffn = flameprofile
        else:
            proffn = statprofile

        with proffn(ui, fp):
            yield

    finally:
        if output:
            if output == 'blackbox':
                val = 'Profile:\n%s' % fp.getvalue()
                # ui.log treats the input as a format string,
                # so we need to escape any % signs.
                val = val.replace('%', '%%')
                ui.log('profile', val)
            fp.close()

@contextlib.contextmanager
def maybeprofile(ui):
    """Profile if enabled, else do nothing.

    This context manager can be used to optionally profile if profiling
    is enabled. Otherwise, it does nothing.

    The purpose of this context manager is to make calling code simpler:
    just use a single code path for calling into code you may want to profile
    and this function determines whether to start profiling.
    """
    if ui.configbool('profiling', 'enabled'):
        with profile(ui):
            yield
    else:
        yield