Mercurial > hg
view mercurial/ancestor.py @ 13340:02aa06a021a0 stable
backout: make help more explicit about what backout does
The help for backout explains:
The backout command merges the reverse effect of the reverted
changeset into the working directory.
Unfortunately, that does not make it obvious to a newcomer what the
backout command does. Since it performs a 3-way merge, what is the
common ancestor? Will the result be automatically committed? What is
this reverted changeset --- is it the rev passed with -r on the
command line or its inverse?
So try to clarify the description, avoiding jargon and being
explicit about what happens from the user's perspective.
Thanks to Gilles Moris, Steve Borho, Kevin Bullock, and timeless for
help.
author | Jonathan Nieder <jrnieder@gmail.com> |
---|---|
date | Thu, 03 Feb 2011 00:27:44 -0600 |
parents | 4cdaf1adafc8 |
children | 22565ddb28e7 |
line wrap: on
line source
# ancestor.py - generic DAG ancestor algorithm for mercurial # # Copyright 2006 Matt Mackall <mpm@selenic.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. import heapq def ancestor(a, b, pfunc): """ return a minimal-distance ancestor of nodes a and b, or None if there is no such ancestor. Note that there can be several ancestors with the same (minimal) distance, and the one returned is arbitrary. pfunc must return a list of parent vertices for a given vertex """ if a == b: return a a, b = sorted([a, b]) # find depth from root of all ancestors parentcache = {} visit = [a, b] depth = {} while visit: vertex = visit[-1] pl = pfunc(vertex) parentcache[vertex] = pl if not pl: depth[vertex] = 0 visit.pop() else: for p in pl: if p == a or p == b: # did we find a or b as a parent? return p # we're done if p not in depth: visit.append(p) if visit[-1] == vertex: depth[vertex] = min([depth[p] for p in pl]) - 1 visit.pop() # traverse ancestors in order of decreasing distance from root def ancestors(vertex): h = [(depth[vertex], vertex)] seen = set() while h: d, n = heapq.heappop(h) if n not in seen: seen.add(n) yield (d, n) for p in parentcache[n]: heapq.heappush(h, (depth[p], p)) def generations(vertex): sg, s = None, set() for g, v in ancestors(vertex): if g != sg: if sg: yield sg, s sg, s = g, set((v,)) else: s.add(v) yield sg, s x = generations(a) y = generations(b) gx = x.next() gy = y.next() # increment each ancestor list until it is closer to root than # the other, or they match try: while 1: if gx[0] == gy[0]: for v in gx[1]: if v in gy[1]: return v gy = y.next() gx = x.next() elif gx[0] > gy[0]: gy = y.next() else: gx = x.next() except StopIteration: return None