view mercurial/pure/mpatch.py @ 31968:02c696bb881c

obsolescence: add test case C-4 for obsolescence markers exchange About 3 years ago, in August 2014, the logic to select what markers to select on push was ported from the evolve extension to Mercurial core. However, for some unclear reasons, the tests for that logic were not ported alongside. I realised it a couple of weeks ago while working on another push related issue. I've made a clean up pass on the tests and they are now ready to integrate the core test suite. This series of changesets do not change any logic. I just adds test for logic that has been around for about 10 versions of Mercurial. They are a patch for each test case. It makes it easier to review and postpone one with documentation issues without rejecting the wholes series. This patch introduce C.4: multiple successors, one is pruned Each test case comes it in own test file. It help parallelism and does not introduce a significant overhead from having a single unified giant test file. Here are timing to support this claim. # Multiple test files version: # run-tests.py --local -j 1 test-exchange-*.t 53.40s user 6.82s system 85% cpu 1:10.76 total 52.79s user 6.97s system 85% cpu 1:09.97 total 52.94s user 6.82s system 85% cpu 1:09.69 total # Single test file version: # run-tests.py --local -j 1 test-exchange-obsmarkers.t 52.97s user 6.85s system 85% cpu 1:10.10 total 52.64s user 6.79s system 85% cpu 1:09.63 total 53.70s user 7.00s system 85% cpu 1:11.17 total
author Pierre-Yves David <pierre-yves.david@ens-lyon.org>
date Mon, 10 Apr 2017 16:53:12 +0200
parents f2846d546645
children 151cc3b3d799
line wrap: on
line source

# mpatch.py - Python implementation of mpatch.c
#
# Copyright 2009 Matt Mackall <mpm@selenic.com> and others
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import

import struct

from . import policy, pycompat
stringio = pycompat.stringio
modulepolicy = policy.policy
policynocffi = policy.policynocffi

class mpatchError(Exception):
    """error raised when a delta cannot be decoded
    """

# This attempts to apply a series of patches in time proportional to
# the total size of the patches, rather than patches * len(text). This
# means rather than shuffling strings around, we shuffle around
# pointers to fragments with fragment lists.
#
# When the fragment lists get too long, we collapse them. To do this
# efficiently, we do all our operations inside a buffer created by
# mmap and simply use memmove. This avoids creating a bunch of large
# temporary string buffers.

def _pull(dst, src, l): # pull l bytes from src
    while l:
        f = src.pop()
        if f[0] > l: # do we need to split?
            src.append((f[0] - l, f[1] + l))
            dst.append((l, f[1]))
            return
        dst.append(f)
        l -= f[0]

def _move(m, dest, src, count):
    """move count bytes from src to dest

    The file pointer is left at the end of dest.
    """
    m.seek(src)
    buf = m.read(count)
    m.seek(dest)
    m.write(buf)

def _collect(m, buf, list):
    start = buf
    for l, p in reversed(list):
        _move(m, buf, p, l)
        buf += l
    return (buf - start, start)

def patches(a, bins):
    if not bins:
        return a

    plens = [len(x) for x in bins]
    pl = sum(plens)
    bl = len(a) + pl
    tl = bl + bl + pl # enough for the patches and two working texts
    b1, b2 = 0, bl

    if not tl:
        return a

    m = stringio()

    # load our original text
    m.write(a)
    frags = [(len(a), b1)]

    # copy all the patches into our segment so we can memmove from them
    pos = b2 + bl
    m.seek(pos)
    for p in bins: m.write(p)

    for plen in plens:
        # if our list gets too long, execute it
        if len(frags) > 128:
            b2, b1 = b1, b2
            frags = [_collect(m, b1, frags)]

        new = []
        end = pos + plen
        last = 0
        while pos < end:
            m.seek(pos)
            try:
                p1, p2, l = struct.unpack(">lll", m.read(12))
            except struct.error:
                raise mpatchError("patch cannot be decoded")
            _pull(new, frags, p1 - last) # what didn't change
            _pull([], frags, p2 - p1)    # what got deleted
            new.append((l, pos + 12))   # what got added
            pos += l + 12
            last = p2
        frags.extend(reversed(new))     # what was left at the end

    t = _collect(m, b2, frags)

    m.seek(t[1])
    return m.read(t[0])

def patchedsize(orig, delta):
    outlen, last, bin = 0, 0, 0
    binend = len(delta)
    data = 12

    while data <= binend:
        decode = delta[bin:bin + 12]
        start, end, length = struct.unpack(">lll", decode)
        if start > end:
            break
        bin = data + length
        data = bin + 12
        outlen += start - last
        last = end
        outlen += length

    if bin != binend:
        raise mpatchError("patch cannot be decoded")

    outlen += orig - last
    return outlen

if modulepolicy not in policynocffi:
    try:
        from _mpatch_cffi import ffi, lib
    except ImportError:
        if modulepolicy == 'cffi': # strict cffi import
            raise
    else:
        @ffi.def_extern()
        def cffi_get_next_item(arg, pos):
            all, bins = ffi.from_handle(arg)
            container = ffi.new("struct mpatch_flist*[1]")
            to_pass = ffi.new("char[]", str(bins[pos]))
            all.append(to_pass)
            r = lib.mpatch_decode(to_pass, len(to_pass) - 1, container)
            if r < 0:
                return ffi.NULL
            return container[0]

        def patches(text, bins):
            lgt = len(bins)
            all = []
            if not lgt:
                return text
            arg = (all, bins)
            patch = lib.mpatch_fold(ffi.new_handle(arg),
                                    lib.cffi_get_next_item, 0, lgt)
            if not patch:
                raise mpatchError("cannot decode chunk")
            outlen = lib.mpatch_calcsize(len(text), patch)
            if outlen < 0:
                lib.mpatch_lfree(patch)
                raise mpatchError("inconsistency detected")
            buf = ffi.new("char[]", outlen)
            if lib.mpatch_apply(buf, text, len(text), patch) < 0:
                lib.mpatch_lfree(patch)
                raise mpatchError("error applying patches")
            res = ffi.buffer(buf, outlen)[:]
            lib.mpatch_lfree(patch)
            return res