mercurial/policy.py
author Gregory Szorc <gregory.szorc@gmail.com>
Tue, 04 Sep 2018 10:42:24 -0700
changeset 39640 039bf1eddc2e
parent 39452 481db51c83e9
child 40708 f2342483f7a6
permissions -rw-r--r--
exchangev2: fetch file revisions Now that the server has an API for fetching file data, we can call into it to fetch file revisions. The implementation is relatively straightforward: we examine the manifests that we fetched and find all new file revisions referenced by them. We build up a mapping from file path to file nodes to manifest node. (The mapping to first manifest node allows us to map back to first changelog node/revision, which is used for the linkrev.) Once that map is built up, we iterate over it in a deterministic manner and fetch and store file data. The code is very similar to manifest fetching. So similar that we could probably extract the common bits into a generic function. With file data retrieval implemented, `hg clone` and `hg pull` are effectively feature complete, at least as far as the completeness of data transfer for essential repository data (changesets, manifests, files, phases, and bookmarks). We're still missing support for obsolescence markers, the hgtags fnodes cache, and the branchmap cache. But these are non-essential for the moment (and will be implemented later). This is a good point to assess the state of exchangev2 in terms of performance. I ran a local `hg clone` for the mozilla-unified repository using both version 1 and version 2 of the wire protocols and exchange methods. This is effectively comparing the performance of the wire protocol overhead and "getbundle" versus domain-specific commands. Wire protocol version 2 doesn't have compression implemented yet. So I tested version 1 with `server.compressionengines=none` to remove compression overhead from the equation. server before: user 220.420+0.000 sys 14.420+0.000 after: user 321.980+0.000 sys 18.990+0.000 client before: real 561.650 secs (user 497.670+0.000 sys 28.160+0.000) after: real 1226.260 secs (user 944.240+0.000 sys 354.150+0.000) We have substantial regressions on both client and server. This is obviously not desirable. I'm aware of some reasons: * Lack of hgtagsfnodes transfer (contributes significant CPU to client). * Lack of branch cache transfer (contributes significant CPU to client). * Little to no profiling / optimization performed on wire protocol version 2 code. * There appears to be a memory leak on the client and that is likely causing swapping on my machine. * Using multiple threads on the client may be counter-productive because Python. * We're not compressing on the server. * We're tracking file nodes on the client via manifest diffing rather than using linkrev shortcuts on the server. I'm pretty confident that most of these issues are addressable. But even if we can't get wire protocol version 2 on performance parity with "getbundle," I still think it is important to have the set of low level data-specific retrieval commands that we have implemented so far. This is because the existence of such commands allows flexibility in how clients access server data. Differential Revision: https://phab.mercurial-scm.org/D4491

# policy.py - module policy logic for Mercurial.
#
# Copyright 2015 Gregory Szorc <gregory.szorc@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import

import os
import sys

# Rules for how modules can be loaded. Values are:
#
#    c - require C extensions
#    allow - allow pure Python implementation when C loading fails
#    cffi - required cffi versions (implemented within pure module)
#    cffi-allow - allow pure Python implementation if cffi version is missing
#    py - only load pure Python modules
#
# By default, fall back to the pure modules so the in-place build can
# run without recompiling the C extensions. This will be overridden by
# __modulepolicy__ generated by setup.py.
policy = b'allow'
_packageprefs = {
    # policy: (versioned package, pure package)
    b'c': (r'cext', None),
    b'allow': (r'cext', r'pure'),
    b'cffi': (r'cffi', None),
    b'cffi-allow': (r'cffi', r'pure'),
    b'py': (None, r'pure'),
}

try:
    from . import __modulepolicy__
    policy = __modulepolicy__.modulepolicy
except ImportError:
    pass

# PyPy doesn't load C extensions.
#
# The canonical way to do this is to test platform.python_implementation().
# But we don't import platform and don't bloat for it here.
if r'__pypy__' in sys.builtin_module_names:
    policy = b'cffi'

# Environment variable can always force settings.
if sys.version_info[0] >= 3:
    if r'HGMODULEPOLICY' in os.environ:
        policy = os.environ[r'HGMODULEPOLICY'].encode(r'utf-8')
else:
    policy = os.environ.get(r'HGMODULEPOLICY', policy)

def _importfrom(pkgname, modname):
    # from .<pkgname> import <modname> (where . is looked through this module)
    fakelocals = {}
    pkg = __import__(pkgname, globals(), fakelocals, [modname], level=1)
    try:
        fakelocals[modname] = mod = getattr(pkg, modname)
    except AttributeError:
        raise ImportError(r'cannot import name %s' % modname)
    # force import; fakelocals[modname] may be replaced with the real module
    getattr(mod, r'__doc__', None)
    return fakelocals[modname]

# keep in sync with "version" in C modules
_cextversions = {
    (r'cext', r'base85'): 1,
    (r'cext', r'bdiff'): 3,
    (r'cext', r'mpatch'): 1,
    (r'cext', r'osutil'): 4,
    (r'cext', r'parsers'): 11,
}

# map import request to other package or module
_modredirects = {
    (r'cext', r'charencode'): (r'cext', r'parsers'),
    (r'cffi', r'base85'): (r'pure', r'base85'),
    (r'cffi', r'charencode'): (r'pure', r'charencode'),
    (r'cffi', r'parsers'): (r'pure', r'parsers'),
}

def _checkmod(pkgname, modname, mod):
    expected = _cextversions.get((pkgname, modname))
    actual = getattr(mod, r'version', None)
    if actual != expected:
        raise ImportError(r'cannot import module %s.%s '
                          r'(expected version: %d, actual: %r)'
                          % (pkgname, modname, expected, actual))

def importmod(modname):
    """Import module according to policy and check API version"""
    try:
        verpkg, purepkg = _packageprefs[policy]
    except KeyError:
        raise ImportError(r'invalid HGMODULEPOLICY %r' % policy)
    assert verpkg or purepkg
    if verpkg:
        pn, mn = _modredirects.get((verpkg, modname), (verpkg, modname))
        try:
            mod = _importfrom(pn, mn)
            if pn == verpkg:
                _checkmod(pn, mn, mod)
            return mod
        except ImportError:
            if not purepkg:
                raise
    pn, mn = _modredirects.get((purepkg, modname), (purepkg, modname))
    return _importfrom(pn, mn)