Mercurial > hg
view hgext/remotefilelog/remotefilectx.py @ 42050:03f6480bfdda
unshelve: disable unshelve during merge (issue5123)
As stated in the issue5123, unshelve can destroy the second parent of
the context when tried to unshelve with an uncommitted merge. This
patch makes unshelve to abort when called with an uncommitted merge.
See how shelve.mergefiles works. Commit structure looks like this:
```
... -> pctx -> tmpwctx -> shelvectx
/
/
second
merge parent
pctx = parent before merging working context(first merge parent)
tmpwctx = commited working directory after merge(with two parents)
shelvectx = shelved context
```
shelve.mergefiles first updates to pctx then it reverts shelvectx to pctx with:
```
cmdutil.revert(ui, repo, shelvectx, repo.dirstate.parents(),
*pathtofiles(repo, files),
**{'no_backup': True})
```
Reverting tmpwctx files that were merged from second parent to pctx makes them
added because they are not in pctx.
Changing this revert operation is crucial to restore parents after unshelve.
This is a complicated issue as this is not fixing a regression. Thus, for the
time being, unshelve during an uncommitted merge can be aborted.
(Details taken from http://mercurial.808500.n3.nabble.com/PATCH-V3-shelve-restore-parents-after-unshelve-issue5123-tt4036858.html#a4037408)
Differential Revision: https://phab.mercurial-scm.org/D6169
author | Navaneeth Suresh <navaneeths1998@gmail.com> |
---|---|
date | Mon, 25 Mar 2019 12:33:41 +0530 |
parents | 041d829575ed |
children | 2372284d9457 |
line wrap: on
line source
# remotefilectx.py - filectx/workingfilectx implementations for remotefilelog # # Copyright 2013 Facebook, Inc. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import import collections import time from mercurial.node import bin, hex, nullid, nullrev from mercurial import ( ancestor, context, error, phases, util, ) from . import shallowutil propertycache = util.propertycache FASTLOG_TIMEOUT_IN_SECS = 0.5 class remotefilectx(context.filectx): def __init__(self, repo, path, changeid=None, fileid=None, filelog=None, changectx=None, ancestormap=None): if fileid == nullrev: fileid = nullid if fileid and len(fileid) == 40: fileid = bin(fileid) super(remotefilectx, self).__init__(repo, path, changeid, fileid, filelog, changectx) self._ancestormap = ancestormap def size(self): return self._filelog.size(self._filenode) @propertycache def _changeid(self): if r'_changeid' in self.__dict__: return self._changeid elif r'_changectx' in self.__dict__: return self._changectx.rev() elif r'_descendantrev' in self.__dict__: # this file context was created from a revision with a known # descendant, we can (lazily) correct for linkrev aliases linknode = self._adjustlinknode(self._path, self._filelog, self._filenode, self._descendantrev) return self._repo.unfiltered().changelog.rev(linknode) else: return self.linkrev() def filectx(self, fileid, changeid=None): '''opens an arbitrary revision of the file without opening a new filelog''' return remotefilectx(self._repo, self._path, fileid=fileid, filelog=self._filelog, changeid=changeid) def linkrev(self): return self._linkrev @propertycache def _linkrev(self): if self._filenode == nullid: return nullrev ancestormap = self.ancestormap() p1, p2, linknode, copyfrom = ancestormap[self._filenode] rev = self._repo.changelog.nodemap.get(linknode) if rev is not None: return rev # Search all commits for the appropriate linkrev (slow, but uncommon) path = self._path fileid = self._filenode cl = self._repo.unfiltered().changelog mfl = self._repo.manifestlog for rev in range(len(cl) - 1, 0, -1): node = cl.node(rev) data = cl.read(node) # get changeset data (we avoid object creation) if path in data[3]: # checking the 'files' field. # The file has been touched, check if the hash is what we're # looking for. if fileid == mfl[data[0]].readfast().get(path): return rev # Couldn't find the linkrev. This should generally not happen, and will # likely cause a crash. return None def introrev(self): """return the rev of the changeset which introduced this file revision This method is different from linkrev because it take into account the changeset the filectx was created from. It ensures the returned revision is one of its ancestors. This prevents bugs from 'linkrev-shadowing' when a file revision is used by multiple changesets. """ lkr = self.linkrev() attrs = vars(self) noctx = not (r'_changeid' in attrs or r'_changectx' in attrs) if noctx or self.rev() == lkr: return lkr linknode = self._adjustlinknode(self._path, self._filelog, self._filenode, self.rev(), inclusive=True) return self._repo.changelog.rev(linknode) def renamed(self): """check if file was actually renamed in this changeset revision If rename logged in file revision, we report copy for changeset only if file revisions linkrev points back to the changeset in question or both changeset parents contain different file revisions. """ ancestormap = self.ancestormap() p1, p2, linknode, copyfrom = ancestormap[self._filenode] if not copyfrom: return None renamed = (copyfrom, p1) if self.rev() == self.linkrev(): return renamed name = self.path() fnode = self._filenode for p in self._changectx.parents(): try: if fnode == p.filenode(name): return None except error.LookupError: pass return renamed def copysource(self): copy = self.renamed() return copy and copy[0] def ancestormap(self): if not self._ancestormap: self._ancestormap = self.filelog().ancestormap(self._filenode) return self._ancestormap def parents(self): repo = self._repo ancestormap = self.ancestormap() p1, p2, linknode, copyfrom = ancestormap[self._filenode] results = [] if p1 != nullid: path = copyfrom or self._path flog = repo.file(path) p1ctx = remotefilectx(repo, path, fileid=p1, filelog=flog, ancestormap=ancestormap) p1ctx._descendantrev = self.rev() results.append(p1ctx) if p2 != nullid: path = self._path flog = repo.file(path) p2ctx = remotefilectx(repo, path, fileid=p2, filelog=flog, ancestormap=ancestormap) p2ctx._descendantrev = self.rev() results.append(p2ctx) return results def _nodefromancrev(self, ancrev, cl, mfl, path, fnode): """returns the node for <path> in <ancrev> if content matches <fnode>""" ancctx = cl.read(ancrev) # This avoids object creation. manifestnode, files = ancctx[0], ancctx[3] # If the file was touched in this ancestor, and the content is similar # to the one we are searching for. if path in files and fnode == mfl[manifestnode].readfast().get(path): return cl.node(ancrev) return None def _adjustlinknode(self, path, filelog, fnode, srcrev, inclusive=False): """return the first ancestor of <srcrev> introducing <fnode> If the linkrev of the file revision does not point to an ancestor of srcrev, we'll walk down the ancestors until we find one introducing this file revision. :repo: a localrepository object (used to access changelog and manifest) :path: the file path :fnode: the nodeid of the file revision :filelog: the filelog of this path :srcrev: the changeset revision we search ancestors from :inclusive: if true, the src revision will also be checked Note: This is based on adjustlinkrev in core, but it's quite different. adjustlinkrev depends on the fact that the linkrev is the bottom most node, and uses that as a stopping point for the ancestor traversal. We can't do that here because the linknode is not guaranteed to be the bottom most one. In our code here, we actually know what a bunch of potential ancestor linknodes are, so instead of stopping the cheap-ancestor-traversal when we get to a linkrev, we stop when we see any of the known linknodes. """ repo = self._repo cl = repo.unfiltered().changelog mfl = repo.manifestlog ancestormap = self.ancestormap() linknode = ancestormap[fnode][2] if srcrev is None: # wctx case, used by workingfilectx during mergecopy revs = [p.rev() for p in self._repo[None].parents()] inclusive = True # we skipped the real (revless) source else: revs = [srcrev] if self._verifylinknode(revs, linknode): return linknode commonlogkwargs = { r'revs': ' '.join([hex(cl.node(rev)) for rev in revs]), r'fnode': hex(fnode), r'filepath': path, r'user': shallowutil.getusername(repo.ui), r'reponame': shallowutil.getreponame(repo.ui), } repo.ui.log('linkrevfixup', 'adjusting linknode\n', **commonlogkwargs) pc = repo._phasecache seenpublic = False iteranc = cl.ancestors(revs, inclusive=inclusive) for ancrev in iteranc: # First, check locally-available history. lnode = self._nodefromancrev(ancrev, cl, mfl, path, fnode) if lnode is not None: return lnode # adjusting linknode can be super-slow. To mitigate the issue # we use two heuristics: calling fastlog and forcing remotefilelog # prefetch if not seenpublic and pc.phase(repo, ancrev) == phases.public: # TODO: there used to be a codepath to fetch linknodes # from a server as a fast path, but it appeared to # depend on an API FB added to their phabricator. lnode = self._forceprefetch(repo, path, fnode, revs, commonlogkwargs) if lnode: return lnode seenpublic = True return linknode def _forceprefetch(self, repo, path, fnode, revs, commonlogkwargs): # This next part is super non-obvious, so big comment block time! # # It is possible to get extremely bad performance here when a fairly # common set of circumstances occur when this extension is combined # with a server-side commit rewriting extension like pushrebase. # # First, an engineer creates Commit A and pushes it to the server. # While the server's data structure will have the correct linkrev # for the files touched in Commit A, the client will have the # linkrev of the local commit, which is "invalid" because it's not # an ancestor of the main line of development. # # The client will never download the remotefilelog with the correct # linkrev as long as nobody else touches that file, since the file # data and history hasn't changed since Commit A. # # After a long time (or a short time in a heavily used repo), if the # same engineer returns to change the same file, some commands -- # such as amends of commits with file moves, logs, diffs, etc -- # can trigger this _adjustlinknode code. In those cases, finding # the correct rev can become quite expensive, as the correct # revision is far back in history and we need to walk back through # history to find it. # # In order to improve this situation, we force a prefetch of the # remotefilelog data blob for the file we were called on. We do this # at most once, when we first see a public commit in the history we # are traversing. # # Forcing the prefetch means we will download the remote blob even # if we have the "correct" blob in the local store. Since the union # store checks the remote store first, this means we are much more # likely to get the correct linkrev at this point. # # In rare circumstances (such as the server having a suboptimal # linkrev for our use case), we will fall back to the old slow path. # # We may want to add additional heuristics here in the future if # the slow path is used too much. One promising possibility is using # obsolescence markers to find a more-likely-correct linkrev. logmsg = '' start = time.time() try: repo.fileservice.prefetch([(path, hex(fnode))], force=True) # Now that we've downloaded a new blob from the server, # we need to rebuild the ancestor map to recompute the # linknodes. self._ancestormap = None linknode = self.ancestormap()[fnode][2] # 2 is linknode if self._verifylinknode(revs, linknode): logmsg = 'remotefilelog prefetching succeeded' return linknode logmsg = 'remotefilelog prefetching not found' return None except Exception as e: logmsg = 'remotefilelog prefetching failed (%s)' % e return None finally: elapsed = time.time() - start repo.ui.log('linkrevfixup', logmsg + '\n', elapsed=elapsed * 1000, **commonlogkwargs) def _verifylinknode(self, revs, linknode): """ Check if a linknode is correct one for the current history. That is, return True if the linkrev is the ancestor of any of the passed in revs, otherwise return False. `revs` is a list that usually has one element -- usually the wdir parent or the user-passed rev we're looking back from. It may contain two revs when there is a merge going on, or zero revs when a root node with no parents is being created. """ if not revs: return False try: # Use the C fastpath to check if the given linknode is correct. cl = self._repo.unfiltered().changelog return any(cl.isancestor(linknode, cl.node(r)) for r in revs) except error.LookupError: # The linknode read from the blob may have been stripped or # otherwise not present in the repository anymore. Do not fail hard # in this case. Instead, return false and continue the search for # the correct linknode. return False def ancestors(self, followfirst=False): ancestors = [] queue = collections.deque((self,)) seen = set() while queue: current = queue.pop() if current.filenode() in seen: continue seen.add(current.filenode()) ancestors.append(current) parents = current.parents() first = True for p in parents: if first or not followfirst: queue.append(p) first = False # Remove self ancestors.pop(0) # Sort by linkrev # The copy tracing algorithm depends on these coming out in order ancestors = sorted(ancestors, reverse=True, key=lambda x:x.linkrev()) for ancestor in ancestors: yield ancestor def ancestor(self, fc2, actx): # the easy case: no (relevant) renames if fc2.path() == self.path() and self.path() in actx: return actx[self.path()] # the next easiest cases: unambiguous predecessor (name trumps # history) if self.path() in actx and fc2.path() not in actx: return actx[self.path()] if fc2.path() in actx and self.path() not in actx: return actx[fc2.path()] # do a full traversal amap = self.ancestormap() bmap = fc2.ancestormap() def parents(x): f, n = x p = amap.get(n) or bmap.get(n) if not p: return [] return [(p[3] or f, p[0]), (f, p[1])] a = (self.path(), self.filenode()) b = (fc2.path(), fc2.filenode()) result = ancestor.genericancestor(a, b, parents) if result: f, n = result r = remotefilectx(self._repo, f, fileid=n, ancestormap=amap) return r return None def annotate(self, *args, **kwargs): introctx = self prefetchskip = kwargs.pop(r'prefetchskip', None) if prefetchskip: # use introrev so prefetchskip can be accurately tested introrev = self.introrev() if self.rev() != introrev: introctx = remotefilectx(self._repo, self._path, changeid=introrev, fileid=self._filenode, filelog=self._filelog, ancestormap=self._ancestormap) # like self.ancestors, but append to "fetch" and skip visiting parents # of nodes in "prefetchskip". fetch = [] seen = set() queue = collections.deque((introctx,)) seen.add(introctx.node()) while queue: current = queue.pop() if current.filenode() != self.filenode(): # this is a "joint point". fastannotate needs contents of # "joint point"s to calculate diffs for side branches. fetch.append((current.path(), hex(current.filenode()))) if prefetchskip and current in prefetchskip: continue for parent in current.parents(): if parent.node() not in seen: seen.add(parent.node()) queue.append(parent) self._repo.ui.debug('remotefilelog: prefetching %d files ' 'for annotate\n' % len(fetch)) if fetch: self._repo.fileservice.prefetch(fetch) return super(remotefilectx, self).annotate(*args, **kwargs) # Return empty set so that the hg serve and thg don't stack trace def children(self): return [] class remoteworkingfilectx(context.workingfilectx, remotefilectx): def __init__(self, repo, path, filelog=None, workingctx=None): self._ancestormap = None super(remoteworkingfilectx, self).__init__(repo, path, filelog, workingctx) def parents(self): return remotefilectx.parents(self) def ancestormap(self): if not self._ancestormap: path = self._path pcl = self._changectx._parents renamed = self.renamed() if renamed: p1 = renamed else: p1 = (path, pcl[0]._manifest.get(path, nullid)) p2 = (path, nullid) if len(pcl) > 1: p2 = (path, pcl[1]._manifest.get(path, nullid)) m = {} if p1[1] != nullid: p1ctx = self._repo.filectx(p1[0], fileid=p1[1]) m.update(p1ctx.filelog().ancestormap(p1[1])) if p2[1] != nullid: p2ctx = self._repo.filectx(p2[0], fileid=p2[1]) m.update(p2ctx.filelog().ancestormap(p2[1])) copyfrom = '' if renamed: copyfrom = renamed[0] m[None] = (p1[1], p2[1], nullid, copyfrom) self._ancestormap = m return self._ancestormap