Mercurial > hg
view tests/test-ancestor.py @ 30829:08b34c3a6f74
revlog: give EXTSTORED flag value to narrowhg
Narrowhg has been using "1 << 14" as its revlog flag value for a long
time. We (Google) have many repos with that value in production
already. When the same value was reserved for EXTSTORED, it made those
repos invalid. Upgrading them will be a little painful. We should
clearly have reserved the value for narrowhg a long time ago. Since
the EXTSTORED flag is not yet in any release and Facebook also says
they have not started using it in production, so it should be okay to
change it. This patch gives the current value (1 << 14) back to
narrowhg and gives a new value (1 << 13) to EXTSTORED.
author | Martin von Zweigbergk <martinvonz@google.com> |
---|---|
date | Tue, 17 Jan 2017 11:25:02 -0800 |
parents | d83ca854fa21 |
children | bd872f64a8ba |
line wrap: on
line source
from __future__ import absolute_import, print_function import binascii import getopt import math import os import random import sys import time from mercurial.node import nullrev from mercurial import ( ancestor, debugcommands, hg, ui as uimod, util, ) def buildgraph(rng, nodes=100, rootprob=0.05, mergeprob=0.2, prevprob=0.7): '''nodes: total number of nodes in the graph rootprob: probability that a new node (not 0) will be a root mergeprob: probability that, excluding a root a node will be a merge prevprob: probability that p1 will be the previous node return value is a graph represented as an adjacency list. ''' graph = [None] * nodes for i in xrange(nodes): if i == 0 or rng.random() < rootprob: graph[i] = [nullrev] elif i == 1: graph[i] = [0] elif rng.random() < mergeprob: if i == 2 or rng.random() < prevprob: # p1 is prev p1 = i - 1 else: p1 = rng.randrange(i - 1) p2 = rng.choice(range(0, p1) + range(p1 + 1, i)) graph[i] = [p1, p2] elif rng.random() < prevprob: graph[i] = [i - 1] else: graph[i] = [rng.randrange(i - 1)] return graph def buildancestorsets(graph): ancs = [None] * len(graph) for i in xrange(len(graph)): ancs[i] = set([i]) if graph[i] == [nullrev]: continue for p in graph[i]: ancs[i].update(ancs[p]) return ancs class naiveincrementalmissingancestors(object): def __init__(self, ancs, bases): self.ancs = ancs self.bases = set(bases) def addbases(self, newbases): self.bases.update(newbases) def removeancestorsfrom(self, revs): for base in self.bases: if base != nullrev: revs.difference_update(self.ancs[base]) revs.discard(nullrev) def missingancestors(self, revs): res = set() for rev in revs: if rev != nullrev: res.update(self.ancs[rev]) for base in self.bases: if base != nullrev: res.difference_update(self.ancs[base]) return sorted(res) def test_missingancestors(seed, rng): # empirically observed to take around 1 second graphcount = 100 testcount = 10 inccount = 10 nerrs = [0] # the default mu and sigma give us a nice distribution of mostly # single-digit counts (including 0) with some higher ones def lognormrandom(mu, sigma): return int(math.floor(rng.lognormvariate(mu, sigma))) def samplerevs(nodes, mu=1.1, sigma=0.8): count = min(lognormrandom(mu, sigma), len(nodes)) return rng.sample(nodes, count) def err(seed, graph, bases, seq, output, expected): if nerrs[0] == 0: print('seed:', hex(seed)[:-1], file=sys.stderr) if gerrs[0] == 0: print('graph:', graph, file=sys.stderr) print('* bases:', bases, file=sys.stderr) print('* seq: ', seq, file=sys.stderr) print('* output: ', output, file=sys.stderr) print('* expected:', expected, file=sys.stderr) nerrs[0] += 1 gerrs[0] += 1 for g in xrange(graphcount): graph = buildgraph(rng) ancs = buildancestorsets(graph) gerrs = [0] for _ in xrange(testcount): # start from nullrev to include it as a possibility graphnodes = range(nullrev, len(graph)) bases = samplerevs(graphnodes) # fast algorithm inc = ancestor.incrementalmissingancestors(graph.__getitem__, bases) # reference slow algorithm naiveinc = naiveincrementalmissingancestors(ancs, bases) seq = [] revs = [] for _ in xrange(inccount): if rng.random() < 0.2: newbases = samplerevs(graphnodes) seq.append(('addbases', newbases)) inc.addbases(newbases) naiveinc.addbases(newbases) if rng.random() < 0.4: # larger set so that there are more revs to remove from revs = samplerevs(graphnodes, mu=1.5) seq.append(('removeancestorsfrom', revs)) hrevs = set(revs) rrevs = set(revs) inc.removeancestorsfrom(hrevs) naiveinc.removeancestorsfrom(rrevs) if hrevs != rrevs: err(seed, graph, bases, seq, sorted(hrevs), sorted(rrevs)) else: revs = samplerevs(graphnodes) seq.append(('missingancestors', revs)) h = inc.missingancestors(revs) r = naiveinc.missingancestors(revs) if h != r: err(seed, graph, bases, seq, h, r) # graph is a dict of child->parent adjacency lists for this graph: # o 13 # | # | o 12 # | | # | | o 11 # | | |\ # | | | | o 10 # | | | | | # | o---+ | 9 # | | | | | # o | | | | 8 # / / / / # | | o | 7 # | | | | # o---+ | 6 # / / / # | | o 5 # | |/ # | o 4 # | | # o | 3 # | | # | o 2 # |/ # o 1 # | # o 0 graph = {0: [-1], 1: [0], 2: [1], 3: [1], 4: [2], 5: [4], 6: [4], 7: [4], 8: [-1], 9: [6, 7], 10: [5], 11: [3, 7], 12: [9], 13: [8]} def genlazyancestors(revs, stoprev=0, inclusive=False): print(("%% lazy ancestor set for %s, stoprev = %s, inclusive = %s" % (revs, stoprev, inclusive))) return ancestor.lazyancestors(graph.get, revs, stoprev=stoprev, inclusive=inclusive) def printlazyancestors(s, l): print('membership: %r' % [n for n in l if n in s]) print('iteration: %r' % list(s)) def test_lazyancestors(): # Empty revs s = genlazyancestors([]) printlazyancestors(s, [3, 0, -1]) # Standard example s = genlazyancestors([11, 13]) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # Standard with ancestry in the initial set (1 is ancestor of 3) s = genlazyancestors([1, 3]) printlazyancestors(s, [1, -1, 0]) # Including revs s = genlazyancestors([11, 13], inclusive=True) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # Test with stoprev s = genlazyancestors([11, 13], stoprev=6) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) s = genlazyancestors([11, 13], stoprev=6, inclusive=True) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # The C gca algorithm requires a real repo. These are textual descriptions of # DAGs that have been known to be problematic. dagtests = [ '+2*2*2/*3/2', '+3*3/*2*2/*4*4/*4/2*4/2*2', ] def test_gca(): u = uimod.ui.load() for i, dag in enumerate(dagtests): repo = hg.repository(u, 'gca%d' % i, create=1) cl = repo.changelog if not util.safehasattr(cl.index, 'ancestors'): # C version not available return debugcommands.debugbuilddag(u, repo, dag) # Compare the results of the Python and C versions. This does not # include choosing a winner when more than one gca exists -- we make # sure both return exactly the same set of gcas. for a in cl: for b in cl: cgcas = sorted(cl.index.ancestors(a, b)) pygcas = sorted(ancestor.ancestors(cl.parentrevs, a, b)) if cgcas != pygcas: print("test_gca: for dag %s, gcas for %d, %d:" % (dag, a, b)) print(" C returned: %s" % cgcas) print(" Python returned: %s" % pygcas) def main(): seed = None opts, args = getopt.getopt(sys.argv[1:], 's:', ['seed=']) for o, a in opts: if o in ('-s', '--seed'): seed = long(a, base=0) # accepts base 10 or 16 strings if seed is None: try: seed = long(binascii.hexlify(os.urandom(16)), 16) except AttributeError: seed = long(time.time() * 1000) rng = random.Random(seed) test_missingancestors(seed, rng) test_lazyancestors() test_gca() if __name__ == '__main__': main()