revset: optimize not public revset
This patvh speeds up the computation of the not public() changeset
and incidentally speed up the computation of divergents() changeset on our big
repo by 100x from 50% to 0.5% of the time spent in smartlog with evolve.
In this patch we optimize not public() to _notpublic() (new revset) and use
the work on phaseset (from the previous commit) to be able to compute
_notpublic() quickly.
We use a non-lazy approach making the assumption the number of notpublic
change will not be in the order of magnitude of the repo size. Adopting a
lazy approach gives a speedup of 5x (vs 100x) only due to the overhead of the
code for lazy generation.
# similar.py - mechanisms for finding similar files
#
# Copyright 2005-2007 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from i18n import _
import util
import mdiff
import bdiff
def _findexactmatches(repo, added, removed):
'''find renamed files that have no changes
Takes a list of new filectxs and a list of removed filectxs, and yields
(before, after) tuples of exact matches.
'''
numfiles = len(added) + len(removed)
# Get hashes of removed files.
hashes = {}
for i, fctx in enumerate(removed):
repo.ui.progress(_('searching for exact renames'), i, total=numfiles)
h = util.sha1(fctx.data()).digest()
hashes[h] = fctx
# For each added file, see if it corresponds to a removed file.
for i, fctx in enumerate(added):
repo.ui.progress(_('searching for exact renames'), i + len(removed),
total=numfiles)
h = util.sha1(fctx.data()).digest()
if h in hashes:
yield (hashes[h], fctx)
# Done
repo.ui.progress(_('searching for exact renames'), None)
def _findsimilarmatches(repo, added, removed, threshold):
'''find potentially renamed files based on similar file content
Takes a list of new filectxs and a list of removed filectxs, and yields
(before, after, score) tuples of partial matches.
'''
copies = {}
for i, r in enumerate(removed):
repo.ui.progress(_('searching for similar files'), i,
total=len(removed))
# lazily load text
@util.cachefunc
def data():
orig = r.data()
return orig, mdiff.splitnewlines(orig)
def score(text):
orig, lines = data()
# bdiff.blocks() returns blocks of matching lines
# count the number of bytes in each
equal = 0
matches = bdiff.blocks(text, orig)
for x1, x2, y1, y2 in matches:
for line in lines[y1:y2]:
equal += len(line)
lengths = len(text) + len(orig)
return equal * 2.0 / lengths
for a in added:
bestscore = copies.get(a, (None, threshold))[1]
myscore = score(a.data())
if myscore >= bestscore:
copies[a] = (r, myscore)
repo.ui.progress(_('searching'), None)
for dest, v in copies.iteritems():
source, score = v
yield source, dest, score
def findrenames(repo, added, removed, threshold):
'''find renamed files -- yields (before, after, score) tuples'''
parentctx = repo['.']
workingctx = repo[None]
# Zero length files will be frequently unrelated to each other, and
# tracking the deletion/addition of such a file will probably cause more
# harm than good. We strip them out here to avoid matching them later on.
addedfiles = set([workingctx[fp] for fp in added
if workingctx[fp].size() > 0])
removedfiles = set([parentctx[fp] for fp in removed
if fp in parentctx and parentctx[fp].size() > 0])
# Find exact matches.
for (a, b) in _findexactmatches(repo,
sorted(addedfiles), sorted(removedfiles)):
addedfiles.remove(b)
yield (a.path(), b.path(), 1.0)
# If the user requested similar files to be matched, search for them also.
if threshold < 1.0:
for (a, b, score) in _findsimilarmatches(repo,
sorted(addedfiles), sorted(removedfiles), threshold):
yield (a.path(), b.path(), score)