view tests/test-lfs-bundle.t @ 49378:094a5fa3cf52 stable 6.2

procutil: make stream detection in make_line_buffered more correct and strict In make_line_buffered(), we don’t want to wrap the stream if we know that lines get flushed to the underlying raw stream already. Previously, the heuristic was too optimistic. It assumed that any stream which is not an instance of io.BufferedIOBase doesn’t need wrapping. However, there are buffered streams that aren’t instances of io.BufferedIOBase, like Mercurial’s own winstdout. The new logic is different in two ways: First, only for the check, if unwraps any combination of WriteAllWrapper and winstdout. Second, it skips wrapping the stream only if it is an instance of io.RawIOBase (or already wrapped). If it is an instance of io.BufferedIOBase, it gets wrapped. In any other case, the function raises an exception. This ensures that, if an unknown stream is passed or we add another wrapper in the future, we don’t wrap the stream if it’s already line buffered or not wrap the stream if it’s not line buffered. In fact, this was already helpful during development of this change. Without it, I possibly would have forgot that WriteAllWrapper needs to be ignored for the check, leading to unnecessary wrapping if stdout is unbuffered. The alternative would have been to always wrap unknown streams. However, I don’t think that anyone would benefit from being less strict. We can expect streams from the standard library to be subclassing either io.RawIOBase or io.BufferedIOBase, so running Mercurial in the standard way should not regress by this change. Py2exe might replace sys.stdout and sys.stderr, but that currently breaks Mercurial anyway and also these streams don’t claim to be interactive, so this function is not called for them.
author Manuel Jacob <me@manueljacob.de>
date Mon, 11 Jul 2022 01:51:20 +0200
parents 3e381eb557f3
children
line wrap: on
line source

In this test, we want to test LFS bundle application on both LFS and non-LFS
repos.

To make it more interesting, the file revisions will contain hg filelog
metadata ('\1\n'). The bundle will have 1 file revision overlapping with the
destination repo.

#  rev      1          2         3
#  repo:    yes        yes       no
#  bundle:  no (base)  yes       yes (deltabase: 2 if possible)

It is interesting because rev 2 could have been stored as LFS in the repo, and
non-LFS in the bundle; or vice-versa.

Init

  $ cat >> $HGRCPATH << EOF
  > [extensions]
  > lfs=
  > drawdag=$TESTDIR/drawdag.py
  > [lfs]
  > url=file:$TESTTMP/lfs-remote
  > EOF

Helper functions

  $ commitxy() {
  > hg debugdrawdag "$@" <<'EOS'
  >  Y  # Y/X=\1\nAAAA\nE\nF
  >  |  # Y/Y=\1\nAAAA\nG\nH
  >  X  # X/X=\1\nAAAA\nC\n
  >     # X/Y=\1\nAAAA\nD\n
  > EOS
  > }

  $ commitz() {
  > hg debugdrawdag "$@" <<'EOS'
  >  Z  # Z/X=\1\nAAAA\nI\n
  >  |  # Z/Y=\1\nAAAA\nJ\n
  >  |  # Z/Z=\1\nZ
  >  Y
  > EOS
  > }

  $ enablelfs() {
  >   cat >> .hg/hgrc <<EOF
  > [lfs]
  > track=all()
  > EOF
  > }

Generate bundles

  $ for i in normal lfs; do
  >   NAME=src-$i
  >   hg init $TESTTMP/$NAME
  >   cd $TESTTMP/$NAME
  >   [ $i = lfs ] && enablelfs
  >   commitxy
  >   commitz
  >   hg bundle -q --base X -r Y+Z $TESTTMP/$NAME.bundle
  >   SRCNAMES="$SRCNAMES $NAME"
  > done

Prepare destination repos

  $ for i in normal lfs; do
  >   NAME=dst-$i
  >   hg init $TESTTMP/$NAME
  >   cd $TESTTMP/$NAME
  >   [ $i = lfs ] && enablelfs
  >   commitxy
  >   DSTNAMES="$DSTNAMES $NAME"
  > done

Apply bundles

  $ for i in $SRCNAMES; do
  >   for j in $DSTNAMES; do
  >     echo ---- Applying $i.bundle to $j ----
  >     cp -R $TESTTMP/$j $TESTTMP/tmp-$i-$j
  >     cd $TESTTMP/tmp-$i-$j
  >     if hg unbundle $TESTTMP/$i.bundle -q 2>/dev/null; then
  >       hg verify -q && echo OK
  >     else
  >       echo CRASHED
  >     fi
  >   done
  > done
  ---- Applying src-normal.bundle to dst-normal ----
  OK
  ---- Applying src-normal.bundle to dst-lfs ----
  OK
  ---- Applying src-lfs.bundle to dst-normal ----
  OK
  ---- Applying src-lfs.bundle to dst-lfs ----
  OK

Hint if the cache location cannot be inferred from the environment

#if windows
  $ unset LOCALAPPDATA
  $ unset APPDATA
  $ HGRCPATH= hg config lfs --source
  abort: unknown lfs usercache location
  (define LOCALAPPDATA or APPDATA in the environment, or set lfs.usercache)
  [255]
#endif

#if osx
  $ unset HOME
  $ HGRCPATH= hg config lfs --source
  abort: unknown lfs usercache location
  (define HOME in the environment, or set lfs.usercache)
  [255]
#endif

#if no-windows no-osx
  $ unset XDG_CACHE_HOME
  $ unset HOME
  $ HGRCPATH= hg config lfs --source
  abort: unknown lfs usercache location
  (define XDG_CACHE_HOME or HOME in the environment, or set lfs.usercache)
  [255]
#endif