view tests/test-update-renames.t @ 17970:0b03454abae7

ancestor: faster algorithm for difference of ancestor sets One of the major reasons rebase is slow in large repositories is the computation of the detach set: the set of ancestors of the changesets to rebase not in the destination parent. This is currently done via a revset that does two walks all the way to the root of the DAG. Instead of doing that, to find ancestors of a set <revs> not in another set <common> we walk up the tree in reverse revision number order, maintaining sets of nodes visited from <revs>, <common> or both. For the common case where the sets are close both topologically and in revision number (relative to repository size), this has been found to speed up rebase by around 15-20%. When the nodes are farther apart and the DAG is highly branching, it is harder to say which would win. Here's how long computing the detach set takes in a linear repository with over 400000 changesets, rebasing near tip: Rebasing across 4 changesets Revset method: 2.2s New algorithm: 0.00015s Rebasing across 250 changesets Revset method: 2.2s New algorithm: 0.00069s Rebasing across 10000 changesets Revset method: 2.4s New algorithm: 0.019s
author Siddharth Agarwal <sid0@fb.com>
date Mon, 26 Nov 2012 11:46:51 -0800
parents 39d38f16a3f7
children ef1eb6df7071
line wrap: on
line source

Test update logic when there are renames

Update with local changes across a file rename

  $ hg init

  $ echo a > a
  $ hg add a
  $ hg ci -m a

  $ hg mv a b
  $ hg ci -m rename

  $ echo b > b
  $ hg ci -m change

  $ hg up -q 0

  $ echo c > a

  $ hg up
  merging a and b to b
  warning: conflicts during merge.
  merging b incomplete! (edit conflicts, then use 'hg resolve --mark')
  0 files updated, 0 files merged, 0 files removed, 1 files unresolved
  use 'hg resolve' to retry unresolved file merges
  [1]