tests/generate-working-copy-states.py
author Georges Racinet <georges.racinet@octobus.net>
Thu, 06 Jul 2023 11:53:40 +0200
branchstable
changeset 50746 124c44b5cfad
parent 48875 6000f5b25c9b
child 51690 493034cc3265
permissions -rw-r--r--
rust-revlog: fix RevlogEntry.data() for NULL_REVISION Before this change, the pseudo-entry returned by `Revlog.get_entry` for `NULL_REVISION` would trigger errors in application code using it. For example, this fixes a crash spotted with changelog data while implementing RHGitaly: `Changelog.data_for_rev(-1)` was already returning the pseudo content as expected, e.g., for `hg log`, but `Changelog.entry_for_rev(-1).data()` would still crash with "corrupted revlog, hash check failed for revision -1". There is an added test for this scenario.

# Helper script used for generating history and working copy files and content.
# The file's name corresponds to its history. The number of changesets can
# be specified on the command line. With 2 changesets, files with names like
# content1_content2_content1-untracked are generated. The first two filename
# segments describe the contents in the two changesets. The third segment
# ("content1-untracked") describes the state in the working copy, i.e.
# the file has content "content1" and is untracked (since it was previously
# tracked, it has been forgotten).
#
# This script generates the filenames and their content, but it's up to the
# caller to tell hg about the state.
#
# There are two subcommands:
#   filelist <numchangesets>
#   state <numchangesets> (<changeset>|wc)
#
# Typical usage:
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 1
# $ hg addremove --similarity 0
# $ hg commit -m 'first'
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 1
# $ hg addremove --similarity 0
# $ hg commit -m 'second'
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 wc
# $ hg addremove --similarity 0
# $ hg forget *_*_*-untracked
# $ rm *_*_missing-*


import os
import sys

# Generates pairs of (filename, contents), where 'contents' is a list
# describing the file's content at each revision (or in the working copy).
# At each revision, it is either None or the file's actual content. When not
# None, it may be either new content or the same content as an earlier
# revisions, so all of (modified,clean,added,removed) can be tested.
def generatestates(maxchangesets, parentcontents):
    depth = len(parentcontents)
    if depth == maxchangesets + 1:
        for tracked in (b'untracked', b'tracked'):
            filename = (
                b"_".join(
                    [
                        (content is None and b'missing' or content)
                        for content in parentcontents
                    ]
                )
                + b"-"
                + tracked
            )
            yield (filename, parentcontents)
    else:
        for content in {None, b'content' + (b"%d" % (depth + 1))} | set(
            parentcontents
        ):
            for combination in generatestates(
                maxchangesets, parentcontents + [content]
            ):
                yield combination


# retrieve the command line arguments
target = sys.argv[1]
maxchangesets = int(sys.argv[2])
if target == 'state':
    depth = sys.argv[3]

# sort to make sure we have stable output
combinations = sorted(generatestates(maxchangesets, []))

# compute file content
content = []
for filename, states in combinations:
    if target == 'filelist':
        print(filename.decode('ascii'))
    elif target == 'state':
        if depth == 'wc':
            # Make sure there is content so the file gets written and can be
            # tracked. It will be deleted outside of this script.
            content.append((filename, states[maxchangesets] or b'TOBEDELETED'))
        else:
            content.append((filename, states[int(depth) - 1]))
    else:
        print("unknown target:", target, file=sys.stderr)
        sys.exit(1)

# write actual content
for filename, data in content:
    if data is not None:
        f = open(filename, 'wb')
        f.write(data + b'\n')
        f.close()
    elif os.path.exists(filename):
        os.remove(filename)