peer: introduce real peer classes
This change separates peer implementations from the repository implementation.
localpeer currently is a simple pass-through to localrepository, except for
legacy calls, which have already been removed from localpeer. This ensures that
the local client code only uses the most modern peer API when talking to local
repos.
Peers have a .local() method which returns either None or the underlying
localrepository (or descendant thereof). Repos have a .peer() method to return
a freshly constructed localpeer. The latter is used by hg.peer(), and also to
allow folks to pass either a peer or a repo to some generic helper methods.
We might want to get rid of .peer() eventually.
The only user of locallegacypeer is debugdiscovery, which uses it to pose as a
pre-setdiscovery client. But we decided to leave the old API defined in
locallegacypeer for clarity and maybe for other uses in the future.
It might be nice to actually define the peer API directly in peer.py as stub
methods. One problem there is, however, that localpeer implements
lock/addchangegroup, whereas the true remote peers implement unbundle.
It might be desireable to get rid of this distinction eventually.
"""
lsprofcalltree.py - lsprof output which is readable by kcachegrind
Authors:
* David Allouche <david <at> allouche.net>
* Jp Calderone & Itamar Shtull-Trauring
* Johan Dahlin
This software may be used and distributed according to the terms
of the GNU General Public License, incorporated herein by reference.
"""
def label(code):
if isinstance(code, str):
return '~' + code # built-in functions ('~' sorts at the end)
else:
return '%s %s:%d' % (code.co_name,
code.co_filename,
code.co_firstlineno)
class KCacheGrind(object):
def __init__(self, profiler):
self.data = profiler.getstats()
self.out_file = None
def output(self, out_file):
self.out_file = out_file
print >> out_file, 'events: Ticks'
self._print_summary()
for entry in self.data:
self._entry(entry)
def _print_summary(self):
max_cost = 0
for entry in self.data:
totaltime = int(entry.totaltime * 1000)
max_cost = max(max_cost, totaltime)
print >> self.out_file, 'summary: %d' % (max_cost,)
def _entry(self, entry):
out_file = self.out_file
code = entry.code
#print >> out_file, 'ob=%s' % (code.co_filename,)
if isinstance(code, str):
print >> out_file, 'fi=~'
else:
print >> out_file, 'fi=%s' % (code.co_filename,)
print >> out_file, 'fn=%s' % (label(code),)
inlinetime = int(entry.inlinetime * 1000)
if isinstance(code, str):
print >> out_file, '0 ', inlinetime
else:
print >> out_file, '%d %d' % (code.co_firstlineno, inlinetime)
# recursive calls are counted in entry.calls
if entry.calls:
calls = entry.calls
else:
calls = []
if isinstance(code, str):
lineno = 0
else:
lineno = code.co_firstlineno
for subentry in calls:
self._subentry(lineno, subentry)
print >> out_file
def _subentry(self, lineno, subentry):
out_file = self.out_file
code = subentry.code
#print >> out_file, 'cob=%s' % (code.co_filename,)
print >> out_file, 'cfn=%s' % (label(code),)
if isinstance(code, str):
print >> out_file, 'cfi=~'
print >> out_file, 'calls=%d 0' % (subentry.callcount,)
else:
print >> out_file, 'cfi=%s' % (code.co_filename,)
print >> out_file, 'calls=%d %d' % (
subentry.callcount, code.co_firstlineno)
totaltime = int(subentry.totaltime * 1000)
print >> out_file, '%d %d' % (lineno, totaltime)