view rust/hg-core/src/revlog/nodemap.rs @ 51229:1b23aaf5eb7b

rust-index: optimize find_gca_candidates() on less than 8 revisions This is expected to be by far the most common case, given that, e.g., merging involves using it on two revisions. Using a `u8` as support for the bitset obviously divides the amount of RAM needed by 8. To state the obvious, on a repository with 10 million changesets, this spares 70MB. It is also possible that it'd be slightly faster, because it is easier to allocate and provides better cache locality. It is possible that some exhaustive listing of the traits implemented by `u8` and `u64` would avoid the added duplication, but that can be done later and would need a replacement for the `MAX` consts.
author Georges Racinet <georges.racinet@octobus.net>
date Fri, 20 Oct 2023 09:12:22 +0200
parents 532e74ad3ff6
children
line wrap: on
line source

// Copyright 2018-2020 Georges Racinet <georges.racinet@octobus.net>
//           and Mercurial contributors
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.
//! Indexing facilities for fast retrieval of `Revision` from `Node`
//!
//! This provides a variation on the 16-ary radix tree that is
//! provided as "nodetree" in revlog.c, ready for append-only persistence
//! on disk.
//!
//! Following existing implicit conventions, the "nodemap" terminology
//! is used in a more abstract context.

use crate::UncheckedRevision;

use super::{
    node::NULL_NODE, Node, NodePrefix, Revision, RevlogIndex, NULL_REVISION,
};

use bytes_cast::{unaligned, BytesCast};
use std::cmp::max;
use std::fmt;
use std::mem::{self, align_of, size_of};
use std::ops::Deref;
use std::ops::Index;

#[derive(Debug, PartialEq)]
pub enum NodeMapError {
    /// A `NodePrefix` matches several [`Revision`]s.
    ///
    /// This can be returned by methods meant for (at most) one match.
    MultipleResults,
    /// A `Revision` stored in the nodemap could not be found in the index
    RevisionNotInIndex(UncheckedRevision),
}

/// Mapping system from Mercurial nodes to revision numbers.
///
/// ## `RevlogIndex` and `NodeMap`
///
/// One way to think about their relationship is that
/// the `NodeMap` is a prefix-oriented reverse index of the [`Node`]
/// information carried by a [`RevlogIndex`].
///
/// Many of the methods in this trait take a `RevlogIndex` argument
/// which is used for validation of their results. This index must naturally
/// be the one the `NodeMap` is about, and it must be consistent.
///
/// Notably, the `NodeMap` must not store
/// information about more `Revision` values than there are in the index.
/// In these methods, an encountered `Revision` is not in the index, a
/// [RevisionNotInIndex](NodeMapError) error is returned.
///
/// In insert operations, the rule is thus that the `NodeMap` must always
/// be updated after the `RevlogIndex` it is about.
pub trait NodeMap {
    /// Find the unique `Revision` having the given `Node`
    ///
    /// If no Revision matches the given `Node`, `Ok(None)` is returned.
    fn find_node(
        &self,
        index: &impl RevlogIndex,
        node: &Node,
    ) -> Result<Option<Revision>, NodeMapError> {
        self.find_bin(index, node.into())
    }

    /// Find the unique Revision whose `Node` starts with a given binary prefix
    ///
    /// If no Revision matches the given prefix, `Ok(None)` is returned.
    ///
    /// If several Revisions match the given prefix, a
    /// [MultipleResults](NodeMapError)  error is returned.
    fn find_bin(
        &self,
        idx: &impl RevlogIndex,
        prefix: NodePrefix,
    ) -> Result<Option<Revision>, NodeMapError>;

    /// Give the size of the shortest node prefix that determines
    /// the revision uniquely.
    ///
    /// From a binary node prefix, if it is matched in the node map, this
    /// returns the number of hexadecimal digits that would had sufficed
    /// to find the revision uniquely.
    ///
    /// Returns `None` if no [`Revision`] could be found for the prefix.
    ///
    /// If several Revisions match the given prefix, a
    /// [MultipleResults](NodeMapError)  error is returned.
    fn unique_prefix_len_bin(
        &self,
        idx: &impl RevlogIndex,
        node_prefix: NodePrefix,
    ) -> Result<Option<usize>, NodeMapError>;

    /// Same as [unique_prefix_len_bin](Self::unique_prefix_len_bin), with
    /// a full [`Node`] as input
    fn unique_prefix_len_node(
        &self,
        idx: &impl RevlogIndex,
        node: &Node,
    ) -> Result<Option<usize>, NodeMapError> {
        self.unique_prefix_len_bin(idx, node.into())
    }
}

pub trait MutableNodeMap: NodeMap {
    fn insert<I: RevlogIndex>(
        &mut self,
        index: &I,
        node: &Node,
        rev: Revision,
    ) -> Result<(), NodeMapError>;
}

/// Low level NodeTree [`Block`] elements
///
/// These are exactly as for instance on persistent storage.
type RawElement = unaligned::I32Be;

/// High level representation of values in NodeTree
/// [`Blocks`](struct.Block.html)
///
/// This is the high level representation that most algorithms should
/// use.
#[derive(Clone, Debug, Eq, PartialEq)]
enum Element {
    // This is not a Mercurial revision. It's a `i32` because this is the
    // right type for this structure.
    Rev(i32),
    Block(usize),
    None,
}

impl From<RawElement> for Element {
    /// Conversion from low level representation, after endianness conversion.
    ///
    /// See [`Block`](struct.Block.html) for explanation about the encoding.
    fn from(raw: RawElement) -> Element {
        let int = raw.get();
        if int >= 0 {
            Element::Block(int as usize)
        } else if int == -1 {
            Element::None
        } else {
            Element::Rev(-int - 2)
        }
    }
}

impl From<Element> for RawElement {
    fn from(element: Element) -> RawElement {
        RawElement::from(match element {
            Element::None => 0,
            Element::Block(i) => i as i32,
            Element::Rev(rev) => -rev - 2,
        })
    }
}

const ELEMENTS_PER_BLOCK: usize = 16; // number of different values in a nybble

/// A logical block of the [`NodeTree`], packed with a fixed size.
///
/// These are always used in container types implementing `Index<Block>`,
/// such as `&Block`
///
/// As an array of integers, its ith element encodes that the
/// ith potential edge from the block, representing the ith hexadecimal digit
/// (nybble) `i` is either:
///
/// - absent (value -1)
/// - another `Block` in the same indexable container (value ≥ 0)
///  - a [`Revision`] leaf (value ≤ -2)
///
/// Endianness has to be fixed for consistency on shared storage across
/// different architectures.
///
/// A key difference with the C `nodetree` is that we need to be
/// able to represent the [`Block`] at index 0, hence -1 is the empty marker
/// rather than 0 and the [`Revision`] range upper limit of -2 instead of -1.
///
/// Another related difference is that `NULL_REVISION` (-1) is not
/// represented at all, because we want an immutable empty nodetree
/// to be valid.
#[derive(Copy, Clone, BytesCast, PartialEq)]
#[repr(transparent)]
pub struct Block([RawElement; ELEMENTS_PER_BLOCK]);

impl Block {
    fn new() -> Self {
        let absent_node = RawElement::from(-1);
        Block([absent_node; ELEMENTS_PER_BLOCK])
    }

    fn get(&self, nybble: u8) -> Element {
        self.0[nybble as usize].into()
    }

    fn set(&mut self, nybble: u8, element: Element) {
        self.0[nybble as usize] = element.into()
    }
}

impl fmt::Debug for Block {
    /// sparse representation for testing and debugging purposes
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_map()
            .entries((0..16).filter_map(|i| match self.get(i) {
                Element::None => None,
                element => Some((i, element)),
            }))
            .finish()
    }
}

/// A mutable 16-radix tree with the root block logically at the end
///
/// Because of the append only nature of our node trees, we need to
/// keep the original untouched and store new blocks separately.
///
/// The mutable root [`Block`] is kept apart so that we don't have to rebump
/// it on each insertion.
pub struct NodeTree {
    readonly: Box<dyn Deref<Target = [Block]> + Send>,
    growable: Vec<Block>,
    root: Block,
    masked_inner_blocks: usize,
}

impl Index<usize> for NodeTree {
    type Output = Block;

    fn index(&self, i: usize) -> &Block {
        let ro_len = self.readonly.len();
        if i < ro_len {
            &self.readonly[i]
        } else if i == ro_len + self.growable.len() {
            &self.root
        } else {
            &self.growable[i - ro_len]
        }
    }
}

/// Return `None` unless the [`Node`] for `rev` has given prefix in `idx`.
fn has_prefix_or_none(
    idx: &impl RevlogIndex,
    prefix: NodePrefix,
    rev: UncheckedRevision,
) -> Result<Option<Revision>, NodeMapError> {
    match idx.check_revision(rev) {
        Some(checked) => idx
            .node(checked)
            .ok_or(NodeMapError::RevisionNotInIndex(rev))
            .map(|node| {
                if prefix.is_prefix_of(node) {
                    Some(checked)
                } else {
                    None
                }
            }),
        None => Err(NodeMapError::RevisionNotInIndex(rev)),
    }
}

/// validate that the candidate's node starts indeed with given prefix,
/// and treat ambiguities related to [`NULL_REVISION`].
///
/// From the data in the NodeTree, one can only conclude that some
/// revision is the only one for a *subprefix* of the one being looked up.
fn validate_candidate(
    idx: &impl RevlogIndex,
    prefix: NodePrefix,
    candidate: (Option<UncheckedRevision>, usize),
) -> Result<(Option<Revision>, usize), NodeMapError> {
    let (rev, steps) = candidate;
    if let Some(nz_nybble) = prefix.first_different_nybble(&NULL_NODE) {
        rev.map_or(Ok((None, steps)), |r| {
            has_prefix_or_none(idx, prefix, r)
                .map(|opt| (opt, max(steps, nz_nybble + 1)))
        })
    } else {
        // the prefix is only made of zeros; NULL_REVISION always matches it
        // and any other *valid* result is an ambiguity
        match rev {
            None => Ok((Some(NULL_REVISION), steps + 1)),
            Some(r) => match has_prefix_or_none(idx, prefix, r)? {
                None => Ok((Some(NULL_REVISION), steps + 1)),
                _ => Err(NodeMapError::MultipleResults),
            },
        }
    }
}

impl NodeTree {
    /// Initiate a NodeTree from an immutable slice-like of `Block`
    ///
    /// We keep `readonly` and clone its root block if it isn't empty.
    fn new(readonly: Box<dyn Deref<Target = [Block]> + Send>) -> Self {
        let root = readonly.last().cloned().unwrap_or_else(Block::new);
        NodeTree {
            readonly,
            growable: Vec::new(),
            root,
            masked_inner_blocks: 0,
        }
    }

    /// Create from an opaque bunch of bytes
    ///
    /// The created [`NodeTreeBytes`] from `bytes`,
    /// of which exactly `amount` bytes are used.
    ///
    /// - `buffer` could be derived from `PyBuffer` and `Mmap` objects.
    /// - `amount` is expressed in bytes, and is not automatically derived from
    ///   `bytes`, so that a caller that manages them atomically can perform
    ///   temporary disk serializations and still rollback easily if needed.
    ///   First use-case for this would be to support Mercurial shell hooks.
    ///
    /// panics if `buffer` is smaller than `amount`
    pub fn load_bytes(
        bytes: Box<dyn Deref<Target = [u8]> + Send>,
        amount: usize,
    ) -> Self {
        NodeTree::new(Box::new(NodeTreeBytes::new(bytes, amount)))
    }

    /// Retrieve added [`Block`]s and the original immutable data
    pub fn into_readonly_and_added(
        self,
    ) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<Block>) {
        let mut vec = self.growable;
        let readonly = self.readonly;
        if readonly.last() != Some(&self.root) {
            vec.push(self.root);
        }
        (readonly, vec)
    }

    /// Retrieve added [`Block]s as bytes, ready to be written to persistent
    /// storage
    pub fn into_readonly_and_added_bytes(
        self,
    ) -> (Box<dyn Deref<Target = [Block]> + Send>, Vec<u8>) {
        let (readonly, vec) = self.into_readonly_and_added();
        // Prevent running `v`'s destructor so we are in complete control
        // of the allocation.
        let vec = mem::ManuallyDrop::new(vec);

        // Transmute the `Vec<Block>` to a `Vec<u8>`. Blocks are contiguous
        // bytes, so this is perfectly safe.
        let bytes = unsafe {
            // Check for compatible allocation layout.
            // (Optimized away by constant-folding + dead code elimination.)
            assert_eq!(size_of::<Block>(), 64);
            assert_eq!(align_of::<Block>(), 1);

            // /!\ Any use of `vec` after this is use-after-free.
            // TODO: use `into_raw_parts` once stabilized
            Vec::from_raw_parts(
                vec.as_ptr() as *mut u8,
                vec.len() * size_of::<Block>(),
                vec.capacity() * size_of::<Block>(),
            )
        };
        (readonly, bytes)
    }

    /// Total number of blocks
    fn len(&self) -> usize {
        self.readonly.len() + self.growable.len() + 1
    }

    /// Implemented for completeness
    ///
    /// A `NodeTree` always has at least the mutable root block.
    #[allow(dead_code)]
    fn is_empty(&self) -> bool {
        false
    }

    /// Main working method for `NodeTree` searches
    ///
    /// The first returned value is the result of analysing `NodeTree` data
    /// *alone*: whereas `None` guarantees that the given prefix is absent
    /// from the [`NodeTree`] data (but still could match [`NULL_NODE`]), with
    /// `Some(rev)`, it is to be understood that `rev` is the unique
    /// [`Revision`] that could match the prefix. Actually, all that can
    /// be inferred from
    /// the `NodeTree` data is that `rev` is the revision with the longest
    /// common node prefix with the given prefix.
    /// We return an [`UncheckedRevision`] because we have no guarantee that
    /// the revision we found is valid for the index.
    ///
    /// The second returned value is the size of the smallest subprefix
    /// of `prefix` that would give the same result, i.e. not the
    /// [MultipleResults](NodeMapError) error variant (again, using only the
    /// data of the [`NodeTree`]).
    fn lookup(
        &self,
        prefix: NodePrefix,
    ) -> Result<(Option<UncheckedRevision>, usize), NodeMapError> {
        for (i, visit_item) in self.visit(prefix).enumerate() {
            if let Some(opt) = visit_item.final_revision() {
                return Ok((opt, i + 1));
            }
        }
        Err(NodeMapError::MultipleResults)
    }

    fn visit(&self, prefix: NodePrefix) -> NodeTreeVisitor {
        NodeTreeVisitor {
            nt: self,
            prefix,
            visit: self.len() - 1,
            nybble_idx: 0,
            done: false,
        }
    }
    /// Return a mutable reference for `Block` at index `idx`.
    ///
    /// If `idx` lies in the immutable area, then the reference is to
    /// a newly appended copy.
    ///
    /// Returns (new_idx, glen, mut_ref) where
    ///
    /// - `new_idx` is the index of the mutable `Block`
    /// - `mut_ref` is a mutable reference to the mutable Block.
    /// - `glen` is the new length of `self.growable`
    ///
    /// Note: the caller wouldn't be allowed to query `self.growable.len()`
    /// itself because of the mutable borrow taken with the returned `Block`
    fn mutable_block(&mut self, idx: usize) -> (usize, &mut Block, usize) {
        let ro_blocks = &self.readonly;
        let ro_len = ro_blocks.len();
        let glen = self.growable.len();
        if idx < ro_len {
            self.masked_inner_blocks += 1;
            self.growable.push(ro_blocks[idx]);
            (glen + ro_len, &mut self.growable[glen], glen + 1)
        } else if glen + ro_len == idx {
            (idx, &mut self.root, glen)
        } else {
            (idx, &mut self.growable[idx - ro_len], glen)
        }
    }

    /// Main insertion method
    ///
    /// This will dive in the node tree to find the deepest `Block` for
    /// `node`, split it as much as needed and record `node` in there.
    /// The method then backtracks, updating references in all the visited
    /// blocks from the root.
    ///
    /// All the mutated `Block` are copied first to the growable part if
    /// needed. That happens for those in the immutable part except the root.
    pub fn insert<I: RevlogIndex>(
        &mut self,
        index: &I,
        node: &Node,
        rev: Revision,
    ) -> Result<(), NodeMapError> {
        let ro_len = &self.readonly.len();

        let mut visit_steps: Vec<_> = self.visit(node.into()).collect();
        let read_nybbles = visit_steps.len();
        // visit_steps cannot be empty, since we always visit the root block
        let deepest = visit_steps.pop().unwrap();

        let (mut block_idx, mut block, mut glen) =
            self.mutable_block(deepest.block_idx);

        if let Element::Rev(old_rev) = deepest.element {
            let old_node = index
                .check_revision(old_rev.into())
                .and_then(|rev| index.node(rev))
                .ok_or_else(|| {
                    NodeMapError::RevisionNotInIndex(old_rev.into())
                })?;
            if old_node == node {
                return Ok(()); // avoid creating lots of useless blocks
            }

            // Looping over the tail of nybbles in both nodes, creating
            // new blocks until we find the difference
            let mut new_block_idx = ro_len + glen;
            let mut nybble = deepest.nybble;
            for nybble_pos in read_nybbles..node.nybbles_len() {
                block.set(nybble, Element::Block(new_block_idx));

                let new_nybble = node.get_nybble(nybble_pos);
                let old_nybble = old_node.get_nybble(nybble_pos);

                if old_nybble == new_nybble {
                    self.growable.push(Block::new());
                    block = &mut self.growable[glen];
                    glen += 1;
                    new_block_idx += 1;
                    nybble = new_nybble;
                } else {
                    let mut new_block = Block::new();
                    new_block.set(old_nybble, Element::Rev(old_rev));
                    new_block.set(new_nybble, Element::Rev(rev.0));
                    self.growable.push(new_block);
                    break;
                }
            }
        } else {
            // Free slot in the deepest block: no splitting has to be done
            block.set(deepest.nybble, Element::Rev(rev.0));
        }

        // Backtrack over visit steps to update references
        while let Some(visited) = visit_steps.pop() {
            let to_write = Element::Block(block_idx);
            if visit_steps.is_empty() {
                self.root.set(visited.nybble, to_write);
                break;
            }
            let (new_idx, block, _) = self.mutable_block(visited.block_idx);
            if block.get(visited.nybble) == to_write {
                break;
            }
            block.set(visited.nybble, to_write);
            block_idx = new_idx;
        }
        Ok(())
    }

    /// Make the whole `NodeTree` logically empty, without touching the
    /// immutable part.
    pub fn invalidate_all(&mut self) {
        self.root = Block::new();
        self.growable = Vec::new();
        self.masked_inner_blocks = self.readonly.len();
    }

    /// Return the number of blocks in the readonly part that are currently
    /// masked in the mutable part.
    ///
    /// The `NodeTree` structure has no efficient way to know how many blocks
    /// are already unreachable in the readonly part.
    ///
    /// After a call to `invalidate_all()`, the returned number can be actually
    /// bigger than the whole readonly part, a conventional way to mean that
    /// all the readonly blocks have been masked. This is what is really
    /// useful to the caller and does not require to know how many were
    /// actually unreachable to begin with.
    pub fn masked_readonly_blocks(&self) -> usize {
        if let Some(readonly_root) = self.readonly.last() {
            if readonly_root == &self.root {
                return 0;
            }
        } else {
            return 0;
        }
        self.masked_inner_blocks + 1
    }
}

pub struct NodeTreeBytes {
    buffer: Box<dyn Deref<Target = [u8]> + Send>,
    len_in_blocks: usize,
}

impl NodeTreeBytes {
    fn new(
        buffer: Box<dyn Deref<Target = [u8]> + Send>,
        amount: usize,
    ) -> Self {
        assert!(buffer.len() >= amount);
        let len_in_blocks = amount / size_of::<Block>();
        NodeTreeBytes {
            buffer,
            len_in_blocks,
        }
    }
}

impl Deref for NodeTreeBytes {
    type Target = [Block];

    fn deref(&self) -> &[Block] {
        Block::slice_from_bytes(&self.buffer, self.len_in_blocks)
            // `NodeTreeBytes::new` already asserted that `self.buffer` is
            // large enough.
            .unwrap()
            .0
    }
}

struct NodeTreeVisitor<'n> {
    nt: &'n NodeTree,
    prefix: NodePrefix,
    visit: usize,
    nybble_idx: usize,
    done: bool,
}

#[derive(Debug, PartialEq, Clone)]
struct NodeTreeVisitItem {
    block_idx: usize,
    nybble: u8,
    element: Element,
}

impl<'n> Iterator for NodeTreeVisitor<'n> {
    type Item = NodeTreeVisitItem;

    fn next(&mut self) -> Option<Self::Item> {
        if self.done || self.nybble_idx >= self.prefix.nybbles_len() {
            return None;
        }

        let nybble = self.prefix.get_nybble(self.nybble_idx);
        self.nybble_idx += 1;

        let visit = self.visit;
        let element = self.nt[visit].get(nybble);
        if let Element::Block(idx) = element {
            self.visit = idx;
        } else {
            self.done = true;
        }

        Some(NodeTreeVisitItem {
            block_idx: visit,
            nybble,
            element,
        })
    }
}

impl NodeTreeVisitItem {
    // Return `Some(opt)` if this item is final, with `opt` being the
    // `UncheckedRevision` that it may represent.
    //
    // If the item is not terminal, return `None`
    fn final_revision(&self) -> Option<Option<UncheckedRevision>> {
        match self.element {
            Element::Block(_) => None,
            Element::Rev(r) => Some(Some(r.into())),
            Element::None => Some(None),
        }
    }
}

impl From<Vec<Block>> for NodeTree {
    fn from(vec: Vec<Block>) -> Self {
        Self::new(Box::new(vec))
    }
}

impl fmt::Debug for NodeTree {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let readonly: &[Block] = &self.readonly;
        write!(
            f,
            "readonly: {:?}, growable: {:?}, root: {:?}",
            readonly, self.growable, self.root
        )
    }
}

impl Default for NodeTree {
    /// Create a fully mutable empty NodeTree
    fn default() -> Self {
        NodeTree::new(Box::<Vec<_>>::default())
    }
}

impl NodeMap for NodeTree {
    fn find_bin<'a>(
        &self,
        idx: &impl RevlogIndex,
        prefix: NodePrefix,
    ) -> Result<Option<Revision>, NodeMapError> {
        validate_candidate(idx, prefix, self.lookup(prefix)?)
            .map(|(opt, _shortest)| opt)
    }

    fn unique_prefix_len_bin<'a>(
        &self,
        idx: &impl RevlogIndex,
        prefix: NodePrefix,
    ) -> Result<Option<usize>, NodeMapError> {
        validate_candidate(idx, prefix, self.lookup(prefix)?)
            .map(|(opt, shortest)| opt.map(|_rev| shortest))
    }
}

#[cfg(test)]
pub mod tests {
    use super::NodeMapError::*;
    use super::*;
    use crate::revlog::node::{hex_pad_right, Node};
    use std::collections::HashMap;

    /// Creates a `Block` using a syntax close to the `Debug` output
    macro_rules! block {
        {$($nybble:tt : $variant:ident($val:tt)),*} => (
            {
                let mut block = Block::new();
                $(block.set($nybble, Element::$variant($val)));*;
                block
            }
        )
    }

    /// Shorthand to reduce boilerplate when creating [`Revision`] for testing
    macro_rules! R {
        ($revision:literal) => {
            Revision($revision)
        };
    }

    #[test]
    fn test_block_debug() {
        let mut block = Block::new();
        block.set(1, Element::Rev(3));
        block.set(10, Element::Block(0));
        assert_eq!(format!("{:?}", block), "{1: Rev(3), 10: Block(0)}");
    }

    #[test]
    fn test_block_macro() {
        let block = block! {5: Block(2)};
        assert_eq!(format!("{:?}", block), "{5: Block(2)}");

        let block = block! {13: Rev(15), 5: Block(2)};
        assert_eq!(format!("{:?}", block), "{5: Block(2), 13: Rev(15)}");
    }

    #[test]
    fn test_raw_block() {
        let mut raw = [255u8; 64];

        let mut counter = 0;
        for val in [0_i32, 15, -2, -1, -3].iter() {
            for byte in val.to_be_bytes().iter() {
                raw[counter] = *byte;
                counter += 1;
            }
        }
        let (block, _) = Block::from_bytes(&raw).unwrap();
        assert_eq!(block.get(0), Element::Block(0));
        assert_eq!(block.get(1), Element::Block(15));
        assert_eq!(block.get(3), Element::None);
        assert_eq!(block.get(2), Element::Rev(0));
        assert_eq!(block.get(4), Element::Rev(1));
    }

    type TestIndex = HashMap<UncheckedRevision, Node>;

    impl RevlogIndex for TestIndex {
        fn node(&self, rev: Revision) -> Option<&Node> {
            self.get(&rev.into())
        }

        fn len(&self) -> usize {
            self.len()
        }

        fn check_revision(&self, rev: UncheckedRevision) -> Option<Revision> {
            self.get(&rev).map(|_| Revision(rev.0))
        }
    }

    /// Pad hexadecimal Node prefix with zeros on the right
    ///
    /// This avoids having to repeatedly write very long hexadecimal
    /// strings for test data, and brings actual hash size independency.
    #[cfg(test)]
    fn pad_node(hex: &str) -> Node {
        Node::from_hex(hex_pad_right(hex)).unwrap()
    }

    /// Pad hexadecimal Node prefix with zeros on the right, then insert
    fn pad_insert(idx: &mut TestIndex, rev: Revision, hex: &str) {
        idx.insert(rev.into(), pad_node(hex));
    }

    fn sample_nodetree() -> NodeTree {
        NodeTree::from(vec![
            block![0: Rev(9)],
            block![0: Rev(0), 1: Rev(9)],
            block![0: Block(1), 1:Rev(1)],
        ])
    }

    fn hex(s: &str) -> NodePrefix {
        NodePrefix::from_hex(s).unwrap()
    }

    #[test]
    fn test_nt_debug() {
        let nt = sample_nodetree();
        assert_eq!(
            format!("{:?}", nt),
            "readonly: \
             [{0: Rev(9)}, {0: Rev(0), 1: Rev(9)}, {0: Block(1), 1: Rev(1)}], \
             growable: [], \
             root: {0: Block(1), 1: Rev(1)}",
        );
    }

    #[test]
    fn test_immutable_find_simplest() -> Result<(), NodeMapError> {
        let mut idx: TestIndex = HashMap::new();
        pad_insert(&mut idx, R!(1), "1234deadcafe");

        let nt = NodeTree::from(vec![block! {1: Rev(1)}]);
        assert_eq!(nt.find_bin(&idx, hex("1"))?, Some(R!(1)));
        assert_eq!(nt.find_bin(&idx, hex("12"))?, Some(R!(1)));
        assert_eq!(nt.find_bin(&idx, hex("1234de"))?, Some(R!(1)));
        assert_eq!(nt.find_bin(&idx, hex("1a"))?, None);
        assert_eq!(nt.find_bin(&idx, hex("ab"))?, None);

        // and with full binary Nodes
        assert_eq!(
            nt.find_node(&idx, idx.get(&1.into()).unwrap())?,
            Some(R!(1))
        );
        let unknown = Node::from_hex(hex_pad_right("3d")).unwrap();
        assert_eq!(nt.find_node(&idx, &unknown)?, None);
        Ok(())
    }

    #[test]
    fn test_immutable_find_one_jump() {
        let mut idx = TestIndex::new();
        pad_insert(&mut idx, R!(9), "012");
        pad_insert(&mut idx, R!(0), "00a");

        let nt = sample_nodetree();

        assert_eq!(nt.find_bin(&idx, hex("0")), Err(MultipleResults));
        assert_eq!(nt.find_bin(&idx, hex("01")), Ok(Some(R!(9))));
        assert_eq!(nt.find_bin(&idx, hex("00")), Err(MultipleResults));
        assert_eq!(nt.find_bin(&idx, hex("00a")), Ok(Some(R!(0))));
        assert_eq!(nt.unique_prefix_len_bin(&idx, hex("00a")), Ok(Some(3)));
        assert_eq!(nt.find_bin(&idx, hex("000")), Ok(Some(NULL_REVISION)));
    }

    #[test]
    fn test_mutated_find() -> Result<(), NodeMapError> {
        let mut idx = TestIndex::new();
        pad_insert(&mut idx, R!(9), "012");
        pad_insert(&mut idx, R!(0), "00a");
        pad_insert(&mut idx, R!(2), "cafe");
        pad_insert(&mut idx, R!(3), "15");
        pad_insert(&mut idx, R!(1), "10");

        let nt = NodeTree {
            readonly: sample_nodetree().readonly,
            growable: vec![block![0: Rev(1), 5: Rev(3)]],
            root: block![0: Block(1), 1:Block(3), 12: Rev(2)],
            masked_inner_blocks: 1,
        };
        assert_eq!(nt.find_bin(&idx, hex("10"))?, Some(R!(1)));
        assert_eq!(nt.find_bin(&idx, hex("c"))?, Some(R!(2)));
        assert_eq!(nt.unique_prefix_len_bin(&idx, hex("c"))?, Some(1));
        assert_eq!(nt.find_bin(&idx, hex("00")), Err(MultipleResults));
        assert_eq!(nt.find_bin(&idx, hex("000"))?, Some(NULL_REVISION));
        assert_eq!(nt.unique_prefix_len_bin(&idx, hex("000"))?, Some(3));
        assert_eq!(nt.find_bin(&idx, hex("01"))?, Some(R!(9)));
        assert_eq!(nt.masked_readonly_blocks(), 2);
        Ok(())
    }

    pub struct TestNtIndex {
        pub index: TestIndex,
        pub nt: NodeTree,
    }

    impl TestNtIndex {
        pub fn new() -> Self {
            TestNtIndex {
                index: HashMap::new(),
                nt: NodeTree::default(),
            }
        }

        pub fn insert_node(
            &mut self,
            rev: Revision,
            node: Node,
        ) -> Result<(), NodeMapError> {
            self.index.insert(rev.into(), node);
            self.nt.insert(&self.index, &node, rev)?;
            Ok(())
        }

        pub fn insert(
            &mut self,
            rev: Revision,
            hex: &str,
        ) -> Result<(), NodeMapError> {
            let node = pad_node(hex);
            self.insert_node(rev, node)
        }

        fn find_hex(
            &self,
            prefix: &str,
        ) -> Result<Option<Revision>, NodeMapError> {
            self.nt.find_bin(&self.index, hex(prefix))
        }

        fn unique_prefix_len_hex(
            &self,
            prefix: &str,
        ) -> Result<Option<usize>, NodeMapError> {
            self.nt.unique_prefix_len_bin(&self.index, hex(prefix))
        }

        /// Drain `added` and restart a new one
        fn commit(self) -> Self {
            let mut as_vec: Vec<Block> =
                self.nt.readonly.iter().copied().collect();
            as_vec.extend(self.nt.growable);
            as_vec.push(self.nt.root);

            Self {
                index: self.index,
                nt: NodeTree::from(as_vec),
            }
        }
    }

    impl Default for TestNtIndex {
        fn default() -> Self {
            Self::new()
        }
    }

    #[test]
    fn test_insert_full_mutable() -> Result<(), NodeMapError> {
        let mut idx = TestNtIndex::new();
        idx.insert(Revision(0), "1234")?;
        assert_eq!(idx.find_hex("1")?, Some(R!(0)));
        assert_eq!(idx.find_hex("12")?, Some(R!(0)));

        // let's trigger a simple split
        idx.insert(Revision(1), "1a34")?;
        assert_eq!(idx.nt.growable.len(), 1);
        assert_eq!(idx.find_hex("12")?, Some(R!(0)));
        assert_eq!(idx.find_hex("1a")?, Some(R!(1)));

        // reinserting is a no_op
        idx.insert(Revision(1), "1a34")?;
        assert_eq!(idx.nt.growable.len(), 1);
        assert_eq!(idx.find_hex("12")?, Some(R!(0)));
        assert_eq!(idx.find_hex("1a")?, Some(R!(1)));

        idx.insert(Revision(2), "1a01")?;
        assert_eq!(idx.nt.growable.len(), 2);
        assert_eq!(idx.find_hex("1a"), Err(NodeMapError::MultipleResults));
        assert_eq!(idx.find_hex("12")?, Some(R!(0)));
        assert_eq!(idx.find_hex("1a3")?, Some(R!(1)));
        assert_eq!(idx.find_hex("1a0")?, Some(R!(2)));
        assert_eq!(idx.find_hex("1a12")?, None);

        // now let's make it split and create more than one additional block
        idx.insert(Revision(3), "1a345")?;
        assert_eq!(idx.nt.growable.len(), 4);
        assert_eq!(idx.find_hex("1a340")?, Some(R!(1)));
        assert_eq!(idx.find_hex("1a345")?, Some(R!(3)));
        assert_eq!(idx.find_hex("1a341")?, None);

        // there's no readonly block to mask
        assert_eq!(idx.nt.masked_readonly_blocks(), 0);
        Ok(())
    }

    #[test]
    fn test_unique_prefix_len_zero_prefix() {
        let mut idx = TestNtIndex::new();
        idx.insert(Revision(0), "00000abcd").unwrap();

        assert_eq!(idx.find_hex("000"), Err(NodeMapError::MultipleResults));
        // in the nodetree proper, this will be found at the first nybble
        // yet the correct answer for unique_prefix_len is not 1, nor 1+1,
        // but the first difference with `NULL_NODE`
        assert_eq!(idx.unique_prefix_len_hex("00000a"), Ok(Some(6)));
        assert_eq!(idx.unique_prefix_len_hex("00000ab"), Ok(Some(6)));

        // same with odd result
        idx.insert(Revision(1), "00123").unwrap();
        assert_eq!(idx.unique_prefix_len_hex("001"), Ok(Some(3)));
        assert_eq!(idx.unique_prefix_len_hex("0012"), Ok(Some(3)));

        // these are unchanged of course
        assert_eq!(idx.unique_prefix_len_hex("00000a"), Ok(Some(6)));
        assert_eq!(idx.unique_prefix_len_hex("00000ab"), Ok(Some(6)));
    }

    #[test]
    fn test_insert_extreme_splitting() -> Result<(), NodeMapError> {
        // check that the splitting loop is long enough
        let mut nt_idx = TestNtIndex::new();
        let nt = &mut nt_idx.nt;
        let idx = &mut nt_idx.index;

        let node0_hex = hex_pad_right("444444");
        let mut node1_hex = hex_pad_right("444444");
        node1_hex.pop();
        node1_hex.push('5');
        let node0 = Node::from_hex(node0_hex).unwrap();
        let node1 = Node::from_hex(&node1_hex).unwrap();

        idx.insert(0.into(), node0);
        nt.insert(idx, &node0, R!(0))?;
        idx.insert(1.into(), node1);
        nt.insert(idx, &node1, R!(1))?;

        assert_eq!(nt.find_bin(idx, (&node0).into())?, Some(R!(0)));
        assert_eq!(nt.find_bin(idx, (&node1).into())?, Some(R!(1)));
        Ok(())
    }

    #[test]
    fn test_insert_partly_immutable() -> Result<(), NodeMapError> {
        let mut idx = TestNtIndex::new();
        idx.insert(Revision(0), "1234")?;
        idx.insert(Revision(1), "1235")?;
        idx.insert(Revision(2), "131")?;
        idx.insert(Revision(3), "cafe")?;
        let mut idx = idx.commit();
        assert_eq!(idx.find_hex("1234")?, Some(R!(0)));
        assert_eq!(idx.find_hex("1235")?, Some(R!(1)));
        assert_eq!(idx.find_hex("131")?, Some(R!(2)));
        assert_eq!(idx.find_hex("cafe")?, Some(R!(3)));
        // we did not add anything since init from readonly
        assert_eq!(idx.nt.masked_readonly_blocks(), 0);

        idx.insert(Revision(4), "123A")?;
        assert_eq!(idx.find_hex("1234")?, Some(R!(0)));
        assert_eq!(idx.find_hex("1235")?, Some(R!(1)));
        assert_eq!(idx.find_hex("131")?, Some(R!(2)));
        assert_eq!(idx.find_hex("cafe")?, Some(R!(3)));
        assert_eq!(idx.find_hex("123A")?, Some(R!(4)));
        // we masked blocks for all prefixes of "123", including the root
        assert_eq!(idx.nt.masked_readonly_blocks(), 4);

        eprintln!("{:?}", idx.nt);
        idx.insert(Revision(5), "c0")?;
        assert_eq!(idx.find_hex("cafe")?, Some(R!(3)));
        assert_eq!(idx.find_hex("c0")?, Some(R!(5)));
        assert_eq!(idx.find_hex("c1")?, None);
        assert_eq!(idx.find_hex("1234")?, Some(R!(0)));
        // inserting "c0" is just splitting the 'c' slot of the mutable root,
        // it doesn't mask anything
        assert_eq!(idx.nt.masked_readonly_blocks(), 4);

        Ok(())
    }

    #[test]
    fn test_invalidate_all() -> Result<(), NodeMapError> {
        let mut idx = TestNtIndex::new();
        idx.insert(Revision(0), "1234")?;
        idx.insert(Revision(1), "1235")?;
        idx.insert(Revision(2), "131")?;
        idx.insert(Revision(3), "cafe")?;
        let mut idx = idx.commit();

        idx.nt.invalidate_all();

        assert_eq!(idx.find_hex("1234")?, None);
        assert_eq!(idx.find_hex("1235")?, None);
        assert_eq!(idx.find_hex("131")?, None);
        assert_eq!(idx.find_hex("cafe")?, None);
        // all the readonly blocks have been masked, this is the
        // conventional expected response
        assert_eq!(idx.nt.masked_readonly_blocks(), idx.nt.readonly.len() + 1);
        Ok(())
    }

    #[test]
    fn test_into_added_empty() {
        assert!(sample_nodetree().into_readonly_and_added().1.is_empty());
        assert!(sample_nodetree()
            .into_readonly_and_added_bytes()
            .1
            .is_empty());
    }

    #[test]
    fn test_into_added_bytes() -> Result<(), NodeMapError> {
        let mut idx = TestNtIndex::new();
        idx.insert(Revision(0), "1234")?;
        let mut idx = idx.commit();
        idx.insert(Revision(4), "cafe")?;
        let (_, bytes) = idx.nt.into_readonly_and_added_bytes();

        // only the root block has been changed
        assert_eq!(bytes.len(), size_of::<Block>());
        // big endian for -2
        assert_eq!(&bytes[4..2 * 4], [255, 255, 255, 254]);
        // big endian for -6
        assert_eq!(&bytes[12 * 4..13 * 4], [255, 255, 255, 250]);
        Ok(())
    }
}