view mercurial/similar.py @ 25190:22438cfd11b5

phases: add set per phase in C phase computation To speed up the computation of draft(), secret(), divergent(), obsolete() and unstable() we need to have a fast way of getting the list of revisions that are in draft(), secret() or the union of both: not public(). This patch extends the work on phase computation in C and make the phase computation code also return a list of set for each non public phase. Using these sets we can quickly obtain all the revisions of a given phase. We do not return a set for the public phase as we expect it to be roughly the size of the repo. Also, it can be computed easily by substracting the entries in the non public phases from all the revs in the repo.
author Laurent Charignon <lcharignon@fb.com>
date Wed, 01 Apr 2015 11:17:17 -0700
parents 525fdb738975
children a56c47ed3885
line wrap: on
line source

# similar.py - mechanisms for finding similar files
#
# Copyright 2005-2007 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from i18n import _
import util
import mdiff
import bdiff

def _findexactmatches(repo, added, removed):
    '''find renamed files that have no changes

    Takes a list of new filectxs and a list of removed filectxs, and yields
    (before, after) tuples of exact matches.
    '''
    numfiles = len(added) + len(removed)

    # Get hashes of removed files.
    hashes = {}
    for i, fctx in enumerate(removed):
        repo.ui.progress(_('searching for exact renames'), i, total=numfiles)
        h = util.sha1(fctx.data()).digest()
        hashes[h] = fctx

    # For each added file, see if it corresponds to a removed file.
    for i, fctx in enumerate(added):
        repo.ui.progress(_('searching for exact renames'), i + len(removed),
                total=numfiles)
        h = util.sha1(fctx.data()).digest()
        if h in hashes:
            yield (hashes[h], fctx)

    # Done
    repo.ui.progress(_('searching for exact renames'), None)

def _findsimilarmatches(repo, added, removed, threshold):
    '''find potentially renamed files based on similar file content

    Takes a list of new filectxs and a list of removed filectxs, and yields
    (before, after, score) tuples of partial matches.
    '''
    copies = {}
    for i, r in enumerate(removed):
        repo.ui.progress(_('searching for similar files'), i,
                         total=len(removed))

        # lazily load text
        @util.cachefunc
        def data():
            orig = r.data()
            return orig, mdiff.splitnewlines(orig)

        def score(text):
            orig, lines = data()
            # bdiff.blocks() returns blocks of matching lines
            # count the number of bytes in each
            equal = 0
            matches = bdiff.blocks(text, orig)
            for x1, x2, y1, y2 in matches:
                for line in lines[y1:y2]:
                    equal += len(line)

            lengths = len(text) + len(orig)
            return equal * 2.0 / lengths

        for a in added:
            bestscore = copies.get(a, (None, threshold))[1]
            myscore = score(a.data())
            if myscore >= bestscore:
                copies[a] = (r, myscore)
    repo.ui.progress(_('searching'), None)

    for dest, v in copies.iteritems():
        source, score = v
        yield source, dest, score

def findrenames(repo, added, removed, threshold):
    '''find renamed files -- yields (before, after, score) tuples'''
    parentctx = repo['.']
    workingctx = repo[None]

    # Zero length files will be frequently unrelated to each other, and
    # tracking the deletion/addition of such a file will probably cause more
    # harm than good. We strip them out here to avoid matching them later on.
    addedfiles = set([workingctx[fp] for fp in added
            if workingctx[fp].size() > 0])
    removedfiles = set([parentctx[fp] for fp in removed
            if fp in parentctx and parentctx[fp].size() > 0])

    # Find exact matches.
    for (a, b) in _findexactmatches(repo,
            sorted(addedfiles), sorted(removedfiles)):
        addedfiles.remove(b)
        yield (a.path(), b.path(), 1.0)

    # If the user requested similar files to be matched, search for them also.
    if threshold < 1.0:
        for (a, b, score) in _findsimilarmatches(repo,
                sorted(addedfiles), sorted(removedfiles), threshold):
            yield (a.path(), b.path(), score)