Mercurial > hg
view tests/test-revlog-raw.py @ 40393:229d23cdb203
exchangev2: support fetching shallow files history
This commit teaches the exchangev2 client code to handle fetching shallow
files data.
Only shallow fetching of files data is supported: shallow fetching of
changeset and manifest data is explicitly not yet supported.
Previously, we would fetch file revisions for changesets that were received
by the current pull operation. In the new model, we calculate the set of
"relevant" changesets given the pull depth and only fetch files data for
those changesets.
We also teach the "filesdata" command invocation to vary parameters as needed.
The implementation here is far from complete or optimal. Subsequent pulls will
end up re-fetching a lot of files data. But the application of this data should
mostly be a no-op on the client, so it isn't a big deal.
Depending on the order file revisions are fetched in, revisions could get
inserted with the wrong revision number relationships. I think the best way
to deal with this is to remove revision numbers from storage and to either
dynamically derive them (by reconstructing a DAG from nodes/parents) or remove
revision numbers from the file storage interface completely.
A missing API that we'll likely want to write pretty soon is "ensure files
for revision(s) are present." We can kind of cajole exchangev2.pull() to do
this. But it isn't very efficient. For example, in simple cases like
widening the store to obtain data for a single revision, it is probably
more efficient to walk the manifest and find exactly which file revisions
are missing and to make explicit requests for just their data. In more
advanced cases, asking the server for all files data may be more efficient,
even though it requires sending data the client already has. There is tons
of room for future experimentation here. And TBH I'm not sure what the
final state will be.
Anyway, this commit gets us pretty close to being able to have shallow
and narrow checkouts with exchangev2/sqlite storage. Close enough that a
minimal extension should be able to provide fill in the gaps until the code
in core stabilizes and there is a user-facing way to trigger the
narrow/shallow bits from `hg clone` without also implying using of the
narrow extension...
Differential Revision: https://phab.mercurial-scm.org/D5169
author | Gregory Szorc <gregory.szorc@gmail.com> |
---|---|
date | Fri, 19 Oct 2018 12:30:49 +0200 |
parents | 0a5b20c107a6 |
children | cca12a31ede5 |
line wrap: on
line source
# test revlog interaction about raw data (flagprocessor) from __future__ import absolute_import, print_function import sys from mercurial import ( encoding, node, revlog, transaction, vfs, ) # TESTTMP is optional. This makes it convenient to run without run-tests.py tvfs = vfs.vfs(encoding.environ.get(b'TESTTMP', b'/tmp')) # Enable generaldelta otherwise revlog won't use delta as expected by the test tvfs.options = {b'generaldelta': True, b'revlogv1': True} # The test wants to control whether to use delta explicitly, based on # "storedeltachains". revlog.revlog._isgooddeltainfo = lambda self, d, textlen: self._storedeltachains def abort(msg): print('abort: %s' % msg) # Return 0 so run-tests.py could compare the output. sys.exit() # Register a revlog processor for flag EXTSTORED. # # It simply prepends a fixed header, and replaces '1' to 'i'. So it has # insertion and replacement, and may be interesting to test revlog's line-based # deltas. _extheader = b'E\n' def readprocessor(self, rawtext): # True: the returned text could be used to verify hash text = rawtext[len(_extheader):].replace(b'i', b'1') return text, True def writeprocessor(self, text): # False: the returned rawtext shouldn't be used to verify hash rawtext = _extheader + text.replace(b'1', b'i') return rawtext, False def rawprocessor(self, rawtext): # False: do not verify hash. Only the content returned by "readprocessor" # can be used to verify hash. return False revlog.addflagprocessor(revlog.REVIDX_EXTSTORED, (readprocessor, writeprocessor, rawprocessor)) # Utilities about reading and appending revlog def newtransaction(): # A transaction is required to write revlogs report = lambda msg: None return transaction.transaction(report, tvfs, {'plain': tvfs}, b'journal') def newrevlog(name=b'_testrevlog.i', recreate=False): if recreate: tvfs.tryunlink(name) rlog = revlog.revlog(tvfs, name) return rlog def appendrev(rlog, text, tr, isext=False, isdelta=True): '''Append a revision. If isext is True, set the EXTSTORED flag so flag processor will be used (and rawtext is different from text). If isdelta is True, force the revision to be a delta, otherwise it's full text. ''' nextrev = len(rlog) p1 = rlog.node(nextrev - 1) p2 = node.nullid if isext: flags = revlog.REVIDX_EXTSTORED else: flags = revlog.REVIDX_DEFAULT_FLAGS # Change storedeltachains temporarily, to override revlog's delta decision rlog._storedeltachains = isdelta try: rlog.addrevision(text, tr, nextrev, p1, p2, flags=flags) return nextrev except Exception as ex: abort('rev %d: failed to append: %s' % (nextrev, ex)) finally: # Restore storedeltachains. It is always True, see revlog.__init__ rlog._storedeltachains = True def addgroupcopy(rlog, tr, destname=b'_destrevlog.i', optimaldelta=True): '''Copy revlog to destname using revlog.addgroup. Return the copied revlog. This emulates push or pull. They use changegroup. Changegroup requires repo to work. We don't have a repo, so a dummy changegroup is used. If optimaldelta is True, use optimized delta parent, so the destination revlog could probably reuse it. Otherwise it builds sub-optimal delta, and the destination revlog needs more work to use it. This exercises some revlog.addgroup (and revlog._addrevision(text=None)) code path, which is not covered by "appendrev" alone. ''' class dummychangegroup(object): @staticmethod def deltachunk(pnode): pnode = pnode or node.nullid parentrev = rlog.rev(pnode) r = parentrev + 1 if r >= len(rlog): return {} if optimaldelta: deltaparent = parentrev else: # suboptimal deltaparent deltaparent = min(0, parentrev) if not rlog.candelta(deltaparent, r): deltaparent = -1 return {b'node': rlog.node(r), b'p1': pnode, b'p2': node.nullid, b'cs': rlog.node(rlog.linkrev(r)), b'flags': rlog.flags(r), b'deltabase': rlog.node(deltaparent), b'delta': rlog.revdiff(deltaparent, r)} def deltaiter(self): chain = None for chunkdata in iter(lambda: self.deltachunk(chain), {}): node = chunkdata[b'node'] p1 = chunkdata[b'p1'] p2 = chunkdata[b'p2'] cs = chunkdata[b'cs'] deltabase = chunkdata[b'deltabase'] delta = chunkdata[b'delta'] flags = chunkdata[b'flags'] chain = node yield (node, p1, p2, cs, deltabase, delta, flags) def linkmap(lnode): return rlog.rev(lnode) dlog = newrevlog(destname, recreate=True) dummydeltas = dummychangegroup().deltaiter() dlog.addgroup(dummydeltas, linkmap, tr) return dlog def lowlevelcopy(rlog, tr, destname=b'_destrevlog.i'): '''Like addgroupcopy, but use the low level revlog._addrevision directly. It exercises some code paths that are hard to reach easily otherwise. ''' dlog = newrevlog(destname, recreate=True) for r in rlog: p1 = rlog.node(r - 1) p2 = node.nullid if r == 0 or (rlog.flags(r) & revlog.REVIDX_EXTSTORED): text = rlog.revision(r, raw=True) cachedelta = None else: # deltaparent cannot have EXTSTORED flag. deltaparent = max([-1] + [p for p in range(r) if rlog.flags(p) & revlog.REVIDX_EXTSTORED == 0]) text = None cachedelta = (deltaparent, rlog.revdiff(deltaparent, r)) flags = rlog.flags(r) ifh = dfh = None try: ifh = dlog.opener(dlog.indexfile, b'a+') if not dlog._inline: dfh = dlog.opener(dlog.datafile, b'a+') dlog._addrevision(rlog.node(r), text, tr, r, p1, p2, flags, cachedelta, ifh, dfh) finally: if dfh is not None: dfh.close() if ifh is not None: ifh.close() return dlog # Utilities to generate revisions for testing def genbits(n): '''Given a number n, generate (2 ** (n * 2) + 1) numbers in range(2 ** n). i.e. the generated numbers have a width of n bits. The combination of two adjacent numbers will cover all possible cases. That is to say, given any x, y where both x, and y are in range(2 ** n), there is an x followed immediately by y in the generated sequence. ''' m = 2 ** n # Gray Code. See https://en.wikipedia.org/wiki/Gray_code gray = lambda x: x ^ (x >> 1) reversegray = dict((gray(i), i) for i in range(m)) # Generate (n * 2) bit gray code, yield lower n bits as X, and look for # the next unused gray code where higher n bits equal to X. # For gray codes whose higher bits are X, a[X] of them have been used. a = [0] * m # Iterate from 0. x = 0 yield x for i in range(m * m): x = reversegray[x] y = gray(a[x] + x * m) & (m - 1) assert a[x] < m a[x] += 1 x = y yield x def gentext(rev): '''Given a revision number, generate dummy text''' return b''.join(b'%d\n' % j for j in range(-1, rev % 5)) def writecases(rlog, tr): '''Write some revisions interested to the test. The test is interested in 3 properties of a revision: - Is it a delta or a full text? (isdelta) This is to catch some delta application issues. - Does it have a flag of EXTSTORED? (isext) This is to catch some flag processor issues. Especially when interacted with revlog deltas. - Is its text empty? (isempty) This is less important. It is intended to try to catch some careless checks like "if text" instead of "if text is None". Note: if flag processor is involved, raw text may be not empty. Write 65 revisions. So that all combinations of the above flags for adjacent revisions are covered. That is to say, len(set( (r.delta, r.ext, r.empty, (r+1).delta, (r+1).ext, (r+1).empty) for r in range(len(rlog) - 1) )) is 64. Where "r.delta", "r.ext", and "r.empty" are booleans matching properties mentioned above. Return expected [(text, rawtext)]. ''' result = [] for i, x in enumerate(genbits(3)): isdelta, isext, isempty = bool(x & 1), bool(x & 2), bool(x & 4) if isempty: text = b'' else: text = gentext(i) rev = appendrev(rlog, text, tr, isext=isext, isdelta=isdelta) # Verify text, rawtext, and rawsize if isext: rawtext = writeprocessor(None, text)[0] else: rawtext = text if rlog.rawsize(rev) != len(rawtext): abort('rev %d: wrong rawsize' % rev) if rlog.revision(rev, raw=False) != text: abort('rev %d: wrong text' % rev) if rlog.revision(rev, raw=True) != rawtext: abort('rev %d: wrong rawtext' % rev) result.append((text, rawtext)) # Verify flags like isdelta, isext work as expected # isdelta can be overridden to False if this or p1 has isext set if bool(rlog.deltaparent(rev) > -1) and not isdelta: abort('rev %d: isdelta is unexpected' % rev) if bool(rlog.flags(rev)) != isext: abort('rev %d: isext is ineffective' % rev) return result # Main test and checking def checkrevlog(rlog, expected): '''Check if revlog has expected contents. expected is [(text, rawtext)]''' # Test using different access orders. This could expose some issues # depending on revlog caching (see revlog._cache). for r0 in range(len(rlog) - 1): r1 = r0 + 1 for revorder in [[r0, r1], [r1, r0]]: for raworder in [[True], [False], [True, False], [False, True]]: nlog = newrevlog() for rev in revorder: for raw in raworder: t = nlog.revision(rev, raw=raw) if t != expected[rev][int(raw)]: abort('rev %d: corrupted %stext' % (rev, raw and 'raw' or '')) def maintest(): expected = rl = None with newtransaction() as tr: rl = newrevlog(recreate=True) expected = writecases(rl, tr) checkrevlog(rl, expected) print('local test passed') # Copy via revlog.addgroup rl1 = addgroupcopy(rl, tr) checkrevlog(rl1, expected) rl2 = addgroupcopy(rl, tr, optimaldelta=False) checkrevlog(rl2, expected) print('addgroupcopy test passed') # Copy via revlog.clone rl3 = newrevlog(name=b'_destrevlog3.i', recreate=True) rl.clone(tr, rl3) checkrevlog(rl3, expected) print('clone test passed') # Copy via low-level revlog._addrevision rl4 = lowlevelcopy(rl, tr) checkrevlog(rl4, expected) print('lowlevelcopy test passed') try: maintest() except Exception as ex: abort('crashed: %s' % ex)