Mercurial > hg
view mercurial/exewrapper.c @ 22196:23fe278bde43
largefiles: keep largefiles from colliding with normal one during linear merge
Before this patch, linear merging of modified or newly added largefile
causes unexpected result, if (1) largefile collides with same name
normal one in the target revision and (2) "local" largefile is chosen,
even though branch merging between such revisions doesn't.
Expected result of such linear merging is:
(1) (not yet recorded) largefile is kept in the working directory
(2) largefile is marked as (re-)"added"
(3) colliding normal file is marked as "removed"
But actual result is:
(1) largefile in the working directory is unlinked
(2) largefile is marked as "normal" (so treated as "missing")
(3) the dirstate entry for colliding normal file is just dropped
(1) is very serious, because there is no way to restore temporarily
modified largefiles.
(3) prevents the next commit from adding the manifest with correct
"removal of (normal) file" information for newly created changeset.
The root cause of this problem is putting "lfile" into "actions['r']"
in linear-merging case. At liner merging, "actions['r']" causes:
- unlinking "target file" in the working directory, but "lfile" as
"target file" is also largefile itself in this case
- dropping the dirstate entry for target file
"actions['f']" (= "forget") does only the latter, and this is reason
why this patch doesn't choose putting "lfile" into it instead of
"actions['r']".
This patch newly introduces action "lfmr" (LargeFiles: Mark as
Removed) to mark colliding normal file as "removed" without unlinking
it.
This patch uses "hg debugdirstate" instead of "hg status" in test,
because:
- choosing "local largefile" hides "removed" status of "remote
normal file" in "hg status" output, and
- "hg status" for "large2" in this case has another problem fixed in
the subsequent patch
author | FUJIWARA Katsunori <foozy@lares.dti.ne.jp> |
---|---|
date | Fri, 15 Aug 2014 20:28:51 +0900 |
parents | 93d97a212559 |
children | d215def59c3b |
line wrap: on
line source
/* exewrapper.c - wrapper for calling a python script on Windows Copyright 2012 Adrian Buehlmann <adrian@cadifra.com> and others This software may be used and distributed according to the terms of the GNU General Public License version 2 or any later version. */ #include <stdio.h> #include <windows.h> #include "hgpythonlib.h" #ifdef __GNUC__ int strcat_s(char *d, size_t n, const char *s) { return !strncat(d, s, n); } int strcpy_s(char *d, size_t n, const char *s) { return !strncpy(d, s, n); } #endif static char pyscript[MAX_PATH + 10]; static char pyhome[MAX_PATH + 10]; static char envpyhome[MAX_PATH + 10]; static char pydllfile[MAX_PATH + 10]; int main(int argc, char *argv[]) { char *p; int ret; int i; int n; char **pyargv; WIN32_FIND_DATA fdata; HANDLE hfind; const char *err; HMODULE pydll; void (__cdecl *Py_SetPythonHome)(char *home); int (__cdecl *Py_Main)(int argc, char *argv[]); if (GetModuleFileName(NULL, pyscript, sizeof(pyscript)) == 0) { err = "GetModuleFileName failed"; goto bail; } p = strrchr(pyscript, '.'); if (p == NULL) { err = "malformed module filename"; goto bail; } *p = 0; /* cut trailing ".exe" */ strcpy_s(pyhome, sizeof(pyhome), pyscript); hfind = FindFirstFile(pyscript, &fdata); if (hfind != INVALID_HANDLE_VALUE) { /* pyscript exists, close handle */ FindClose(hfind); } else { /* file pyscript isn't there, take <pyscript>exe.py */ strcat_s(pyscript, sizeof(pyscript), "exe.py"); } pydll = NULL; if (GetEnvironmentVariable("PYTHONHOME", envpyhome, sizeof(envpyhome)) == 0) { /* environment var PYTHONHOME is not set */ p = strrchr(pyhome, '\\'); if (p == NULL) { err = "can't find backslash in module filename"; goto bail; } *p = 0; /* cut at directory */ /* check for private Python of HackableMercurial */ strcat_s(pyhome, sizeof(pyhome), "\\hg-python"); hfind = FindFirstFile(pyhome, &fdata); if (hfind != INVALID_HANDLE_VALUE) { /* path pyhome exists, let's use it */ FindClose(hfind); strcpy_s(pydllfile, sizeof(pydllfile), pyhome); strcat_s(pydllfile, sizeof(pydllfile), "\\" HGPYTHONLIB); pydll = LoadLibrary(pydllfile); if (pydll == NULL) { err = "failed to load private Python DLL"; goto bail; } Py_SetPythonHome = (void*)GetProcAddress(pydll, "Py_SetPythonHome"); if (Py_SetPythonHome == NULL) { err = "failed to get Py_SetPythonHome"; goto bail; } Py_SetPythonHome(pyhome); } } if (pydll == NULL) { pydll = LoadLibrary(HGPYTHONLIB); if (pydll == NULL) { err = "failed to load Python DLL"; goto bail; } } Py_Main = (void*)GetProcAddress(pydll, "Py_Main"); if (Py_Main == NULL) { err = "failed to get Py_Main"; goto bail; } /* Only add the pyscript to the args, if it's not already there. It may already be there, if the script spawned a child process of itself, in the same way as it got called, that is, with the pyscript already in place. So we optionally accept the pyscript as the first argument (argv[1]), letting our exe taking the role of the python interpreter. */ if (argc >= 2 && strcmp(argv[1], pyscript) == 0) { /* pyscript is already in the args, so there is no need to copy the args and we can directly call the python interpreter with the original args. */ return Py_Main(argc, argv); } /* Start assembling the args for the Python interpreter call. We put the name of our exe (argv[0]) in the position where the python.exe canonically is, and insert the pyscript next. */ pyargv = malloc((argc + 5) * sizeof(char*)); if (pyargv == NULL) { err = "not enough memory"; goto bail; } n = 0; pyargv[n++] = argv[0]; pyargv[n++] = pyscript; /* copy remaining args from the command line */ for (i = 1; i < argc; i++) pyargv[n++] = argv[i]; /* argv[argc] is guaranteed to be NULL, so we forward that guarantee */ pyargv[n] = NULL; ret = Py_Main(n, pyargv); /* The Python interpreter call */ free(pyargv); return ret; bail: fprintf(stderr, "abort: %s\n", err); return 255; }