view mercurial/lsprof.py @ 22196:23fe278bde43

largefiles: keep largefiles from colliding with normal one during linear merge Before this patch, linear merging of modified or newly added largefile causes unexpected result, if (1) largefile collides with same name normal one in the target revision and (2) "local" largefile is chosen, even though branch merging between such revisions doesn't. Expected result of such linear merging is: (1) (not yet recorded) largefile is kept in the working directory (2) largefile is marked as (re-)"added" (3) colliding normal file is marked as "removed" But actual result is: (1) largefile in the working directory is unlinked (2) largefile is marked as "normal" (so treated as "missing") (3) the dirstate entry for colliding normal file is just dropped (1) is very serious, because there is no way to restore temporarily modified largefiles. (3) prevents the next commit from adding the manifest with correct "removal of (normal) file" information for newly created changeset. The root cause of this problem is putting "lfile" into "actions['r']" in linear-merging case. At liner merging, "actions['r']" causes: - unlinking "target file" in the working directory, but "lfile" as "target file" is also largefile itself in this case - dropping the dirstate entry for target file "actions['f']" (= "forget") does only the latter, and this is reason why this patch doesn't choose putting "lfile" into it instead of "actions['r']". This patch newly introduces action "lfmr" (LargeFiles: Mark as Removed) to mark colliding normal file as "removed" without unlinking it. This patch uses "hg debugdirstate" instead of "hg status" in test, because: - choosing "local largefile" hides "removed" status of "remote normal file" in "hg status" output, and - "hg status" for "large2" in this case has another problem fixed in the subsequent patch
author FUJIWARA Katsunori <foozy@lares.dti.ne.jp>
date Fri, 15 Aug 2014 20:28:51 +0900
parents a40d608e2a7b
children 9c75daf89450
line wrap: on
line source

import sys
from _lsprof import Profiler, profiler_entry

__all__ = ['profile', 'Stats']

def profile(f, *args, **kwds):
    """XXX docstring"""
    p = Profiler()
    p.enable(subcalls=True, builtins=True)
    try:
        f(*args, **kwds)
    finally:
        p.disable()
    return Stats(p.getstats())


class Stats(object):
    """XXX docstring"""

    def __init__(self, data):
        self.data = data

    def sort(self, crit="inlinetime"):
        """XXX docstring"""
        if crit not in profiler_entry.__dict__:
            raise ValueError("Can't sort by %s" % crit)
        self.data.sort(key=lambda x: getattr(x, crit), reverse=True)
        for e in self.data:
            if e.calls:
                e.calls.sort(key=lambda x: getattr(x, crit), reverse=True)

    def pprint(self, top=None, file=None, limit=None, climit=None):
        """XXX docstring"""
        if file is None:
            file = sys.stdout
        d = self.data
        if top is not None:
            d = d[:top]
        cols = "% 12s %12s %11.4f %11.4f   %s\n"
        hcols = "% 12s %12s %12s %12s %s\n"
        file.write(hcols % ("CallCount", "Recursive", "Total(s)",
                            "Inline(s)", "module:lineno(function)"))
        count = 0
        for e in d:
            file.write(cols % (e.callcount, e.reccallcount, e.totaltime,
                               e.inlinetime, label(e.code)))
            count += 1
            if limit is not None and count == limit:
                return
            ccount = 0
            if climit and e.calls:
                for se in e.calls:
                    file.write(cols % (se.callcount, se.reccallcount,
                                       se.totaltime, se.inlinetime,
                                       "    %s" % label(se.code)))
                    count += 1
                    ccount += 1
                    if limit is not None and count == limit:
                        return
                    if climit is not None and ccount == climit:
                        break

    def freeze(self):
        """Replace all references to code objects with string
        descriptions; this makes it possible to pickle the instance."""

        # this code is probably rather ickier than it needs to be!
        for i in range(len(self.data)):
            e = self.data[i]
            if not isinstance(e.code, str):
                self.data[i] = type(e)((label(e.code),) + e[1:])
            if e.calls:
                for j in range(len(e.calls)):
                    se = e.calls[j]
                    if not isinstance(se.code, str):
                        e.calls[j] = type(se)((label(se.code),) + se[1:])

_fn2mod = {}

def label(code):
    if isinstance(code, str):
        return code
    try:
        mname = _fn2mod[code.co_filename]
    except KeyError:
        for k, v in list(sys.modules.iteritems()):
            if v is None:
                continue
            if not isinstance(getattr(v, '__file__', None), str):
                continue
            if v.__file__.startswith(code.co_filename):
                mname = _fn2mod[code.co_filename] = k
                break
        else:
            mname = _fn2mod[code.co_filename] = '<%s>' % code.co_filename

    return '%s:%d(%s)' % (mname, code.co_firstlineno, code.co_name)


if __name__ == '__main__':
    import os
    sys.argv = sys.argv[1:]
    if not sys.argv:
        print >> sys.stderr, "usage: lsprof.py <script> <arguments...>"
        sys.exit(2)
    sys.path.insert(0, os.path.abspath(os.path.dirname(sys.argv[0])))
    stats = profile(execfile, sys.argv[0], globals(), locals())
    stats.sort()
    stats.pprint()