Mercurial > hg
view mercurial/py3kcompat.py @ 22196:23fe278bde43
largefiles: keep largefiles from colliding with normal one during linear merge
Before this patch, linear merging of modified or newly added largefile
causes unexpected result, if (1) largefile collides with same name
normal one in the target revision and (2) "local" largefile is chosen,
even though branch merging between such revisions doesn't.
Expected result of such linear merging is:
(1) (not yet recorded) largefile is kept in the working directory
(2) largefile is marked as (re-)"added"
(3) colliding normal file is marked as "removed"
But actual result is:
(1) largefile in the working directory is unlinked
(2) largefile is marked as "normal" (so treated as "missing")
(3) the dirstate entry for colliding normal file is just dropped
(1) is very serious, because there is no way to restore temporarily
modified largefiles.
(3) prevents the next commit from adding the manifest with correct
"removal of (normal) file" information for newly created changeset.
The root cause of this problem is putting "lfile" into "actions['r']"
in linear-merging case. At liner merging, "actions['r']" causes:
- unlinking "target file" in the working directory, but "lfile" as
"target file" is also largefile itself in this case
- dropping the dirstate entry for target file
"actions['f']" (= "forget") does only the latter, and this is reason
why this patch doesn't choose putting "lfile" into it instead of
"actions['r']".
This patch newly introduces action "lfmr" (LargeFiles: Mark as
Removed) to mark colliding normal file as "removed" without unlinking
it.
This patch uses "hg debugdirstate" instead of "hg status" in test,
because:
- choosing "local largefile" hides "removed" status of "remote
normal file" in "hg status" output, and
- "hg status" for "large2" in this case has another problem fixed in
the subsequent patch
author | FUJIWARA Katsunori <foozy@lares.dti.ne.jp> |
---|---|
date | Fri, 15 Aug 2014 20:28:51 +0900 |
parents | a7a9d84f5e4a |
children | 5bfd01a3c2a9 |
line wrap: on
line source
# py3kcompat.py - compatibility definitions for running hg in py3k # # Copyright 2010 Renato Cunha <renatoc@gmail.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. import builtins from numbers import Number def bytesformatter(format, args): '''Custom implementation of a formatter for bytestrings. This function currently relies on the string formatter to do the formatting and always returns bytes objects. >>> bytesformatter(20, 10) 0 >>> bytesformatter('unicode %s, %s!', ('string', 'foo')) b'unicode string, foo!' >>> bytesformatter(b'test %s', 'me') b'test me' >>> bytesformatter('test %s', 'me') b'test me' >>> bytesformatter(b'test %s', b'me') b'test me' >>> bytesformatter('test %s', b'me') b'test me' >>> bytesformatter('test %d: %s', (1, b'result')) b'test 1: result' ''' # The current implementation just converts from bytes to unicode, do # what's needed and then convert the results back to bytes. # Another alternative is to use the Python C API implementation. if isinstance(format, Number): # If the fixer erroneously passes a number remainder operation to # bytesformatter, we just return the correct operation return format % args if isinstance(format, bytes): format = format.decode('utf-8', 'surrogateescape') if isinstance(args, bytes): args = args.decode('utf-8', 'surrogateescape') if isinstance(args, tuple): newargs = [] for arg in args: if isinstance(arg, bytes): arg = arg.decode('utf-8', 'surrogateescape') newargs.append(arg) args = tuple(newargs) ret = format % args return ret.encode('utf-8', 'surrogateescape') builtins.bytesformatter = bytesformatter origord = builtins.ord def fakeord(char): if isinstance(char, int): return char return origord(char) builtins.ord = fakeord if __name__ == '__main__': import doctest doctest.testmod()