view mercurial/worker.py @ 22196:23fe278bde43

largefiles: keep largefiles from colliding with normal one during linear merge Before this patch, linear merging of modified or newly added largefile causes unexpected result, if (1) largefile collides with same name normal one in the target revision and (2) "local" largefile is chosen, even though branch merging between such revisions doesn't. Expected result of such linear merging is: (1) (not yet recorded) largefile is kept in the working directory (2) largefile is marked as (re-)"added" (3) colliding normal file is marked as "removed" But actual result is: (1) largefile in the working directory is unlinked (2) largefile is marked as "normal" (so treated as "missing") (3) the dirstate entry for colliding normal file is just dropped (1) is very serious, because there is no way to restore temporarily modified largefiles. (3) prevents the next commit from adding the manifest with correct "removal of (normal) file" information for newly created changeset. The root cause of this problem is putting "lfile" into "actions['r']" in linear-merging case. At liner merging, "actions['r']" causes: - unlinking "target file" in the working directory, but "lfile" as "target file" is also largefile itself in this case - dropping the dirstate entry for target file "actions['f']" (= "forget") does only the latter, and this is reason why this patch doesn't choose putting "lfile" into it instead of "actions['r']". This patch newly introduces action "lfmr" (LargeFiles: Mark as Removed) to mark colliding normal file as "removed" without unlinking it. This patch uses "hg debugdirstate" instead of "hg status" in test, because: - choosing "local largefile" hides "removed" status of "remote normal file" in "hg status" output, and - "hg status" for "large2" in this case has another problem fixed in the subsequent patch
author FUJIWARA Katsunori <foozy@lares.dti.ne.jp>
date Fri, 15 Aug 2014 20:28:51 +0900
parents 1e5b38a919dd
children b3e51675f98e
line wrap: on
line source

# worker.py - master-slave parallelism support
#
# Copyright 2013 Facebook, Inc.
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from i18n import _
import errno, os, signal, sys, threading
import util

def countcpus():
    '''try to count the number of CPUs on the system'''

    # posix
    try:
        n = int(os.sysconf('SC_NPROCESSORS_ONLN'))
        if n > 0:
            return n
    except (AttributeError, ValueError):
        pass

    # windows
    try:
        n = int(os.environ['NUMBER_OF_PROCESSORS'])
        if n > 0:
            return n
    except (KeyError, ValueError):
        pass

    return 1

def _numworkers(ui):
    s = ui.config('worker', 'numcpus')
    if s:
        try:
            n = int(s)
            if n >= 1:
                return n
        except ValueError:
            raise util.Abort(_('number of cpus must be an integer'))
    return min(max(countcpus(), 4), 32)

if os.name == 'posix':
    _startupcost = 0.01
else:
    _startupcost = 1e30

def worthwhile(ui, costperop, nops):
    '''try to determine whether the benefit of multiple processes can
    outweigh the cost of starting them'''
    linear = costperop * nops
    workers = _numworkers(ui)
    benefit = linear - (_startupcost * workers + linear / workers)
    return benefit >= 0.15

def worker(ui, costperarg, func, staticargs, args):
    '''run a function, possibly in parallel in multiple worker
    processes.

    returns a progress iterator

    costperarg - cost of a single task

    func - function to run

    staticargs - arguments to pass to every invocation of the function

    args - arguments to split into chunks, to pass to individual
    workers
    '''
    if worthwhile(ui, costperarg, len(args)):
        return _platformworker(ui, func, staticargs, args)
    return func(*staticargs + (args,))

def _posixworker(ui, func, staticargs, args):
    rfd, wfd = os.pipe()
    workers = _numworkers(ui)
    oldhandler = signal.getsignal(signal.SIGINT)
    signal.signal(signal.SIGINT, signal.SIG_IGN)
    pids, problem = [], [0]
    for pargs in partition(args, workers):
        pid = os.fork()
        if pid == 0:
            signal.signal(signal.SIGINT, oldhandler)
            try:
                os.close(rfd)
                for i, item in func(*(staticargs + (pargs,))):
                    os.write(wfd, '%d %s\n' % (i, item))
                os._exit(0)
            except KeyboardInterrupt:
                os._exit(255)
                # other exceptions are allowed to propagate, we rely
                # on lock.py's pid checks to avoid release callbacks
        pids.append(pid)
    pids.reverse()
    os.close(wfd)
    fp = os.fdopen(rfd, 'rb', 0)
    def killworkers():
        # if one worker bails, there's no good reason to wait for the rest
        for p in pids:
            try:
                os.kill(p, signal.SIGTERM)
            except OSError, err:
                if err.errno != errno.ESRCH:
                    raise
    def waitforworkers():
        for _ in pids:
            st = _exitstatus(os.wait()[1])
            if st and not problem[0]:
                problem[0] = st
                killworkers()
    t = threading.Thread(target=waitforworkers)
    t.start()
    def cleanup():
        signal.signal(signal.SIGINT, oldhandler)
        t.join()
        status = problem[0]
        if status:
            if status < 0:
                os.kill(os.getpid(), -status)
            sys.exit(status)
    try:
        for line in fp:
            l = line.split(' ', 1)
            yield int(l[0]), l[1][:-1]
    except: # re-raises
        killworkers()
        cleanup()
        raise
    cleanup()

def _posixexitstatus(code):
    '''convert a posix exit status into the same form returned by
    os.spawnv

    returns None if the process was stopped instead of exiting'''
    if os.WIFEXITED(code):
        return os.WEXITSTATUS(code)
    elif os.WIFSIGNALED(code):
        return -os.WTERMSIG(code)

if os.name != 'nt':
    _platformworker = _posixworker
    _exitstatus = _posixexitstatus

def partition(lst, nslices):
    '''partition a list into N slices of equal size'''
    n = len(lst)
    chunk, slop = n / nslices, n % nslices
    end = 0
    for i in xrange(nslices):
        start = end
        end = start + chunk
        if slop:
            end += 1
            slop -= 1
        yield lst[start:end]