Mercurial > hg
view rust/hg-core/src/revlog/node.rs @ 44973:26114bd6ec60
rust: do a clippy pass
This is the result of running `cargo clippy` on hg-core/hg-cpython and fixing
the lints that do not require too much code churn (and would warrant a separate
commit/complete refactor) and only come from our code (a lot of warnings in
hg-cpython come from `rust-cpython`).
Most of those were good lints, two of them was the linter not being smart
enough (or compiler to get up to `clippy`'s level depending on how you see it).
Maybe in the future we could have `clippy` be part of the CI.
Differential Revision: https://phab.mercurial-scm.org/D8635
author | Raphaël Gomès <rgomes@octobus.net> |
---|---|
date | Mon, 15 Jun 2020 18:26:40 +0200 |
parents | 166349510398 |
children | b0d6309ff50c |
line wrap: on
line source
// Copyright 2019-2020 Georges Racinet <georges.racinet@octobus.net> // // This software may be used and distributed according to the terms of the // GNU General Public License version 2 or any later version. //! Definitions and utilities for Revision nodes //! //! In Mercurial code base, it is customary to call "a node" the binary SHA //! of a revision. use hex::{self, FromHex, FromHexError}; /// The length in bytes of a `Node` /// /// This constant is meant to ease refactors of this module, and /// are private so that calling code does not expect all nodes have /// the same size, should we support several formats concurrently in /// the future. const NODE_BYTES_LENGTH: usize = 20; /// The length in bytes of a `Node` /// /// see also `NODES_BYTES_LENGTH` about it being private. const NODE_NYBBLES_LENGTH: usize = 2 * NODE_BYTES_LENGTH; /// Private alias for readability and to ease future change type NodeData = [u8; NODE_BYTES_LENGTH]; /// Binary revision SHA /// /// ## Future changes of hash size /// /// To accomodate future changes of hash size, Rust callers /// should use the conversion methods at the boundaries (FFI, actual /// computation of hashes and I/O) only, and only if required. /// /// All other callers outside of unit tests should just handle `Node` values /// and never make any assumption on the actual length, using [`nybbles_len`] /// if they need a loop boundary. /// /// All methods that create a `Node` either take a type that enforces /// the size or fail immediately at runtime with [`ExactLengthRequired`]. /// /// [`nybbles_len`]: #method.nybbles_len /// [`ExactLengthRequired`]: struct.NodeError#variant.ExactLengthRequired #[derive(Clone, Debug, PartialEq)] #[repr(transparent)] pub struct Node { data: NodeData, } /// The node value for NULL_REVISION pub const NULL_NODE: Node = Node { data: [0; NODE_BYTES_LENGTH], }; impl From<NodeData> for Node { fn from(data: NodeData) -> Node { Node { data } } } #[derive(Debug, PartialEq)] pub enum NodeError { ExactLengthRequired(usize, String), PrefixTooLong(String), HexError(FromHexError, String), } /// Low level utility function, also for prefixes fn get_nybble(s: &[u8], i: usize) -> u8 { if i % 2 == 0 { s[i / 2] >> 4 } else { s[i / 2] & 0x0f } } impl Node { /// Retrieve the `i`th half-byte of the binary data. /// /// This is also the `i`th hexadecimal digit in numeric form, /// also called a [nybble](https://en.wikipedia.org/wiki/Nibble). pub fn get_nybble(&self, i: usize) -> u8 { get_nybble(&self.data, i) } /// Length of the data, in nybbles pub fn nybbles_len(&self) -> usize { // public exposure as an instance method only, so that we can // easily support several sizes of hashes if needed in the future. NODE_NYBBLES_LENGTH } /// Convert from hexadecimal string representation /// /// Exact length is required. /// /// To be used in FFI and I/O only, in order to facilitate future /// changes of hash format. pub fn from_hex(hex: &str) -> Result<Node, NodeError> { Ok(NodeData::from_hex(hex) .map_err(|e| NodeError::from((e, hex)))? .into()) } /// Convert to hexadecimal string representation /// /// To be used in FFI and I/O only, in order to facilitate future /// changes of hash format. pub fn encode_hex(&self) -> String { hex::encode(self.data) } /// Provide access to binary data /// /// This is needed by FFI layers, for instance to return expected /// binary values to Python. pub fn as_bytes(&self) -> &[u8] { &self.data } } impl<T: AsRef<str>> From<(FromHexError, T)> for NodeError { fn from(err_offender: (FromHexError, T)) -> Self { let (err, offender) = err_offender; match err { FromHexError::InvalidStringLength => { NodeError::ExactLengthRequired( NODE_NYBBLES_LENGTH, offender.as_ref().to_owned(), ) } _ => NodeError::HexError(err, offender.as_ref().to_owned()), } } } /// The beginning of a binary revision SHA. /// /// Since it can potentially come from an hexadecimal representation with /// odd length, it needs to carry around whether the last 4 bits are relevant /// or not. #[derive(Debug, PartialEq)] pub struct NodePrefix { buf: Vec<u8>, is_odd: bool, } impl NodePrefix { /// Convert from hexadecimal string representation /// /// Similarly to `hex::decode`, can be used with Unicode string types /// (`String`, `&str`) as well as bytes. /// /// To be used in FFI and I/O only, in order to facilitate future /// changes of hash format. pub fn from_hex(hex: impl AsRef<[u8]>) -> Result<Self, NodeError> { let hex = hex.as_ref(); let len = hex.len(); if len > NODE_NYBBLES_LENGTH { return Err(NodeError::PrefixTooLong( String::from_utf8_lossy(hex).to_owned().to_string(), )); } let is_odd = len % 2 == 1; let even_part = if is_odd { &hex[..len - 1] } else { hex }; let mut buf: Vec<u8> = Vec::from_hex(&even_part) .map_err(|e| (e, String::from_utf8_lossy(hex)))?; if is_odd { let latest_char = char::from(hex[len - 1]); let latest_nybble = latest_char.to_digit(16).ok_or_else(|| { ( FromHexError::InvalidHexCharacter { c: latest_char, index: len - 1, }, String::from_utf8_lossy(hex), ) })? as u8; buf.push(latest_nybble << 4); } Ok(NodePrefix { buf, is_odd }) } pub fn borrow(&self) -> NodePrefixRef { NodePrefixRef { buf: &self.buf, is_odd: self.is_odd, } } } #[derive(Clone, Debug, PartialEq)] pub struct NodePrefixRef<'a> { buf: &'a [u8], is_odd: bool, } impl<'a> NodePrefixRef<'a> { pub fn len(&self) -> usize { if self.is_odd { self.buf.len() * 2 - 1 } else { self.buf.len() * 2 } } pub fn is_empty(&self) -> bool { self.len() == 0 } pub fn is_prefix_of(&self, node: &Node) -> bool { if self.is_odd { let buf = self.buf; let last_pos = buf.len() - 1; node.data.starts_with(buf.split_at(last_pos).0) && node.data[last_pos] >> 4 == buf[last_pos] >> 4 } else { node.data.starts_with(self.buf) } } /// Retrieve the `i`th half-byte from the prefix. /// /// This is also the `i`th hexadecimal digit in numeric form, /// also called a [nybble](https://en.wikipedia.org/wiki/Nibble). pub fn get_nybble(&self, i: usize) -> u8 { assert!(i < self.len()); get_nybble(self.buf, i) } /// Return the index first nybble that's different from `node` /// /// If the return value is `None` that means that `self` is /// a prefix of `node`, but the current method is a bit slower /// than `is_prefix_of`. /// /// Returned index is as in `get_nybble`, i.e., starting at 0. pub fn first_different_nybble(&self, node: &Node) -> Option<usize> { let buf = self.buf; let until = if self.is_odd { buf.len() - 1 } else { buf.len() }; for (i, item) in buf.iter().enumerate().take(until) { if *item != node.data[i] { return if *item & 0xf0 == node.data[i] & 0xf0 { Some(2 * i + 1) } else { Some(2 * i) }; } } if self.is_odd && buf[until] & 0xf0 != node.data[until] & 0xf0 { Some(until * 2) } else { None } } } /// A shortcut for full `Node` references impl<'a> From<&'a Node> for NodePrefixRef<'a> { fn from(node: &'a Node) -> Self { NodePrefixRef { buf: &node.data, is_odd: false, } } } #[cfg(test)] mod tests { use super::*; fn sample_node() -> Node { let mut data = [0; NODE_BYTES_LENGTH]; data.copy_from_slice(&[ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0xde, 0xad, 0xbe, 0xef, ]); data.into() } /// Pad an hexadecimal string to reach `NODE_NYBBLES_LENGTH` /// /// The padding is made with zeros pub fn hex_pad_right(hex: &str) -> String { let mut res = hex.to_string(); while res.len() < NODE_NYBBLES_LENGTH { res.push('0'); } res } fn sample_node_hex() -> String { hex_pad_right("0123456789abcdeffedcba9876543210deadbeef") } #[test] fn test_node_from_hex() { assert_eq!(Node::from_hex(&sample_node_hex()), Ok(sample_node())); let mut short = hex_pad_right("0123"); short.pop(); short.pop(); assert_eq!( Node::from_hex(&short), Err(NodeError::ExactLengthRequired(NODE_NYBBLES_LENGTH, short)), ); let not_hex = hex_pad_right("012... oops"); assert_eq!( Node::from_hex(¬_hex), Err(NodeError::HexError( FromHexError::InvalidHexCharacter { c: '.', index: 3 }, not_hex, )), ); } #[test] fn test_node_encode_hex() { assert_eq!(sample_node().encode_hex(), sample_node_hex()); } #[test] fn test_prefix_from_hex() -> Result<(), NodeError> { assert_eq!( NodePrefix::from_hex("0e1")?, NodePrefix { buf: vec![14, 16], is_odd: true } ); assert_eq!( NodePrefix::from_hex("0e1a")?, NodePrefix { buf: vec![14, 26], is_odd: false } ); // checking limit case let node_as_vec = sample_node().data.iter().cloned().collect(); assert_eq!( NodePrefix::from_hex(sample_node_hex())?, NodePrefix { buf: node_as_vec, is_odd: false } ); Ok(()) } #[test] fn test_prefix_from_hex_errors() { assert_eq!( NodePrefix::from_hex("testgr"), Err(NodeError::HexError( FromHexError::InvalidHexCharacter { c: 't', index: 0 }, "testgr".to_string() )) ); let mut long = NULL_NODE.encode_hex(); long.push('c'); match NodePrefix::from_hex(&long) .expect_err("should be refused as too long") { NodeError::PrefixTooLong(s) => assert_eq!(s, long), err => panic!(format!("Should have been TooLong, got {:?}", err)), } } #[test] fn test_is_prefix_of() -> Result<(), NodeError> { let mut node_data = [0; NODE_BYTES_LENGTH]; node_data[0] = 0x12; node_data[1] = 0xca; let node = Node::from(node_data); assert!(NodePrefix::from_hex("12")?.borrow().is_prefix_of(&node)); assert!(!NodePrefix::from_hex("1a")?.borrow().is_prefix_of(&node)); assert!(NodePrefix::from_hex("12c")?.borrow().is_prefix_of(&node)); assert!(!NodePrefix::from_hex("12d")?.borrow().is_prefix_of(&node)); Ok(()) } #[test] fn test_get_nybble() -> Result<(), NodeError> { let prefix = NodePrefix::from_hex("dead6789cafe")?; assert_eq!(prefix.borrow().get_nybble(0), 13); assert_eq!(prefix.borrow().get_nybble(7), 9); Ok(()) } #[test] fn test_first_different_nybble_even_prefix() { let prefix = NodePrefix::from_hex("12ca").unwrap(); let prefref = prefix.borrow(); let mut node = Node::from([0; NODE_BYTES_LENGTH]); assert_eq!(prefref.first_different_nybble(&node), Some(0)); node.data[0] = 0x13; assert_eq!(prefref.first_different_nybble(&node), Some(1)); node.data[0] = 0x12; assert_eq!(prefref.first_different_nybble(&node), Some(2)); node.data[1] = 0xca; // now it is a prefix assert_eq!(prefref.first_different_nybble(&node), None); } #[test] fn test_first_different_nybble_odd_prefix() { let prefix = NodePrefix::from_hex("12c").unwrap(); let prefref = prefix.borrow(); let mut node = Node::from([0; NODE_BYTES_LENGTH]); assert_eq!(prefref.first_different_nybble(&node), Some(0)); node.data[0] = 0x13; assert_eq!(prefref.first_different_nybble(&node), Some(1)); node.data[0] = 0x12; assert_eq!(prefref.first_different_nybble(&node), Some(2)); node.data[1] = 0xca; // now it is a prefix assert_eq!(prefref.first_different_nybble(&node), None); } } #[cfg(test)] pub use tests::hex_pad_right;