view mercurial/encoding.py @ 31765:264baeef3588

show: new extension for displaying various repository data Currently, Mercurial has a number of commands to show information. And, there are features coming down the pipe that will introduce more commands for showing information. Currently, when introducing a new class of data or a view that we wish to expose to the user, the strategy is to introduce a new command or overload an existing command, sometimes both. For example, there is a desire to formalize the wip/smartlog/underway/mine functionality that many have devised. There is also a desire to introduce a "topics" concept. Others would like views of "the current stack." In the current model, we'd need a new command for wip/smartlog/etc (that behaves a lot like a pre-defined alias of `hg log`). For topics, we'd likely overload `hg topic[s]` to both display and manipulate topics. Adding new commands for every pre-defined query doesn't scale well and pollutes `hg help`. Overloading commands to perform read-only and write operations is arguably an UX anti-pattern: while having all functionality for a given concept in one command is nice, having a single command doing multiple discrete operations is not. Furthermore, a user may be surprised that a command they thought was read-only actually changes something. We discussed this at the Mercurial 4.0 Sprint in Paris and decided that having a single command where we could hang pre-defined views of various data would be a good idea. Having such a command would: * Help prevent an explosion of new query-related commands * Create a clear separation between read and write operations (mitigates footguns) * Avoids overloading the meaning of commands that manipulate data (bookmark, tag, branch, etc) (while we can't take away the existing behavior for BC reasons, we now won't introduce this behavior on new commands) * Allows users to discover informational views more easily by aggregating them in a single location * Lowers the barrier to creating the new views (since the barrier to creating a top-level command is relatively high) So, this commit introduces the `hg show` command via the "show" extension. This command accepts a positional argument of the "view" to show. New views can be registered with a decorator. To prove it works, we implement the "bookmarks" view, which shows a table of bookmarks and their associated nodes. We introduce a new style to hold everything used by `hg show`. For our initial bookmarks view, the output varies from `hg bookmarks`: * Padding is performed in the template itself as opposed to Python * Revision integers are not shown * shortest() is used to display a 5 character node by default (as opposed to static 12 characters) I chose to implement the "bookmarks" view first because it is simple and shouldn't invite too much bikeshedding that detracts from the evaluation of `hg show` itself. But there is an important point to consider: we now have 2 ways to show a list of bookmarks. I'm not a fan of introducing multiple ways to do very similar things. So it might be worth discussing how we wish to tackle this issue for bookmarks, tags, branches, MQ series, etc. I also made the choice of explicitly declaring the default show template not part of the standard BC guarantees. History has shown that we make mistakes and poor choices with output formatting but can't fix these mistakes later because random tools are parsing output and we don't want to break these tools. Optimizing for human consumption is one of my goals for `hg show`. So, by not covering the formatting as part of BC, the barrier to future change is much lower and humans benefit. There are some improvements that can be made to formatting. For example, we don't yet use label() in the templates. We obviously want this for color. But I'm not sure if we should reuse the existing log.* labels or invent new ones. I figure we can punt that to a follow-up. At the aforementioned Sprint, we discussed and discarded various alternatives to `hg show`. We considered making `hg log <view>` perform this behavior. The main reason we can't do this is because a positional argument to `hg log` can be a file path and if there is a conflict between a path name and a view name, behavior is ambiguous. We could have introduced `hg log --view` or similar, but we felt that required too much typing (we don't want to require a command flag to show a view) and wasn't very discoverable. Furthermore, `hg log` is optimized for showing changelog data and there are things that `hg display` could display that aren't changelog centric. There were concerns about using "show" as the command name. Some users already have a "show" alias that is similar to `hg export`. There were also concerns that Git users adapted to `git show` would be confused by `hg show`'s different behavior. The main difference here is `git show` prints an `hg export` like view of the current commit by default and `hg show` requires an argument. `git show` can also display any Git object. `git show` does not support displaying more complex views: just single objects. If we implemented `hg show <hash>` or `hg show <identifier>`, `hg show` would be a superset of `git show`. Although, I'm hesitant to do that at this time because I view `hg show` as a higher-level querying command and there are namespace collisions between valid identifiers and registered views. There is also a prefix collision with `hg showconfig`, which is an alias of `hg config`. We also considered `hg view`, but that is already used by the "hgk" extension. `hg display` was also proposed at one point. It has a prefix collision with `hg diff`. General consensus was "show" or "view" are the best verbs. And since "view" was taken, "show" was chosen. There are a number of inline TODOs in this patch. Some of these represent decisions yet to be made. Others represent features requiring non-trivial complexity. Rather than bloat the patch or invite additional bikeshedding, I figured I'd document future enhancements via TODO so we can get a minimal implmentation landed. Something is better than nothing.
author Gregory Szorc <gregory.szorc@gmail.com>
date Fri, 24 Mar 2017 19:19:00 -0700
parents 6419cd243017
children 7d2cbe11ae48
line wrap: on
line source

# encoding.py - character transcoding support for Mercurial
#
#  Copyright 2005-2009 Matt Mackall <mpm@selenic.com> and others
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import

import array
import locale
import os
import unicodedata

from . import (
    error,
    pycompat,
)

_sysstr = pycompat.sysstr

if pycompat.ispy3:
    unichr = chr

# These unicode characters are ignored by HFS+ (Apple Technote 1150,
# "Unicode Subtleties"), so we need to ignore them in some places for
# sanity.
_ignore = [unichr(int(x, 16)).encode("utf-8") for x in
           "200c 200d 200e 200f 202a 202b 202c 202d 202e "
           "206a 206b 206c 206d 206e 206f feff".split()]
# verify the next function will work
if pycompat.ispy3:
    assert set(i[0] for i in _ignore) == set([ord(b'\xe2'), ord(b'\xef')])
else:
    assert set(i[0] for i in _ignore) == set(["\xe2", "\xef"])

def hfsignoreclean(s):
    """Remove codepoints ignored by HFS+ from s.

    >>> hfsignoreclean(u'.h\u200cg'.encode('utf-8'))
    '.hg'
    >>> hfsignoreclean(u'.h\ufeffg'.encode('utf-8'))
    '.hg'
    """
    if "\xe2" in s or "\xef" in s:
        for c in _ignore:
            s = s.replace(c, '')
    return s

# encoding.environ is provided read-only, which may not be used to modify
# the process environment
_nativeenviron = (not pycompat.ispy3 or os.supports_bytes_environ)
if not pycompat.ispy3:
    environ = os.environ
elif _nativeenviron:
    environ = os.environb
else:
    # preferred encoding isn't known yet; use utf-8 to avoid unicode error
    # and recreate it once encoding is settled
    environ = dict((k.encode(u'utf-8'), v.encode(u'utf-8'))
                   for k, v in os.environ.items())

def _getpreferredencoding():
    '''
    On darwin, getpreferredencoding ignores the locale environment and
    always returns mac-roman. http://bugs.python.org/issue6202 fixes this
    for Python 2.7 and up. This is the same corrected code for earlier
    Python versions.

    However, we can't use a version check for this method, as some distributions
    patch Python to fix this. Instead, we use it as a 'fixer' for the mac-roman
    encoding, as it is unlikely that this encoding is the actually expected.
    '''
    try:
        locale.CODESET
    except AttributeError:
        # Fall back to parsing environment variables :-(
        return locale.getdefaultlocale()[1]

    oldloc = locale.setlocale(locale.LC_CTYPE)
    locale.setlocale(locale.LC_CTYPE, "")
    result = locale.nl_langinfo(locale.CODESET)
    locale.setlocale(locale.LC_CTYPE, oldloc)

    return result

_encodingfixers = {
    '646': lambda: 'ascii',
    'ANSI_X3.4-1968': lambda: 'ascii',
    'mac-roman': _getpreferredencoding
}

try:
    encoding = environ.get("HGENCODING")
    if not encoding:
        encoding = locale.getpreferredencoding().encode('ascii') or 'ascii'
        encoding = _encodingfixers.get(encoding, lambda: encoding)()
except locale.Error:
    encoding = 'ascii'
encodingmode = environ.get("HGENCODINGMODE", "strict")
fallbackencoding = 'ISO-8859-1'

class localstr(str):
    '''This class allows strings that are unmodified to be
    round-tripped to the local encoding and back'''
    def __new__(cls, u, l):
        s = str.__new__(cls, l)
        s._utf8 = u
        return s
    def __hash__(self):
        return hash(self._utf8) # avoid collisions in local string space

def tolocal(s):
    """
    Convert a string from internal UTF-8 to local encoding

    All internal strings should be UTF-8 but some repos before the
    implementation of locale support may contain latin1 or possibly
    other character sets. We attempt to decode everything strictly
    using UTF-8, then Latin-1, and failing that, we use UTF-8 and
    replace unknown characters.

    The localstr class is used to cache the known UTF-8 encoding of
    strings next to their local representation to allow lossless
    round-trip conversion back to UTF-8.

    >>> u = 'foo: \\xc3\\xa4' # utf-8
    >>> l = tolocal(u)
    >>> l
    'foo: ?'
    >>> fromlocal(l)
    'foo: \\xc3\\xa4'
    >>> u2 = 'foo: \\xc3\\xa1'
    >>> d = { l: 1, tolocal(u2): 2 }
    >>> len(d) # no collision
    2
    >>> 'foo: ?' in d
    False
    >>> l1 = 'foo: \\xe4' # historical latin1 fallback
    >>> l = tolocal(l1)
    >>> l
    'foo: ?'
    >>> fromlocal(l) # magically in utf-8
    'foo: \\xc3\\xa4'
    """

    try:
        try:
            # make sure string is actually stored in UTF-8
            u = s.decode('UTF-8')
            if encoding == 'UTF-8':
                # fast path
                return s
            r = u.encode(_sysstr(encoding), u"replace")
            if u == r.decode(_sysstr(encoding)):
                # r is a safe, non-lossy encoding of s
                return r
            return localstr(s, r)
        except UnicodeDecodeError:
            # we should only get here if we're looking at an ancient changeset
            try:
                u = s.decode(_sysstr(fallbackencoding))
                r = u.encode(_sysstr(encoding), u"replace")
                if u == r.decode(_sysstr(encoding)):
                    # r is a safe, non-lossy encoding of s
                    return r
                return localstr(u.encode('UTF-8'), r)
            except UnicodeDecodeError:
                u = s.decode("utf-8", "replace") # last ditch
                # can't round-trip
                return u.encode(_sysstr(encoding), u"replace")
    except LookupError as k:
        raise error.Abort(k, hint="please check your locale settings")

def fromlocal(s):
    """
    Convert a string from the local character encoding to UTF-8

    We attempt to decode strings using the encoding mode set by
    HGENCODINGMODE, which defaults to 'strict'. In this mode, unknown
    characters will cause an error message. Other modes include
    'replace', which replaces unknown characters with a special
    Unicode character, and 'ignore', which drops the character.
    """

    # can we do a lossless round-trip?
    if isinstance(s, localstr):
        return s._utf8

    try:
        u = s.decode(_sysstr(encoding), _sysstr(encodingmode))
        return u.encode("utf-8")
    except UnicodeDecodeError as inst:
        sub = s[max(0, inst.start - 10):inst.start + 10]
        raise error.Abort("decoding near '%s': %s!" % (sub, inst))
    except LookupError as k:
        raise error.Abort(k, hint="please check your locale settings")

def unitolocal(u):
    """Convert a unicode string to a byte string of local encoding"""
    return tolocal(u.encode('utf-8'))

def unifromlocal(s):
    """Convert a byte string of local encoding to a unicode string"""
    return fromlocal(s).decode('utf-8')

# converter functions between native str and byte string. use these if the
# character encoding is not aware (e.g. exception message) or is known to
# be locale dependent (e.g. date formatting.)
if pycompat.ispy3:
    strtolocal = unitolocal
    strfromlocal = unifromlocal
else:
    strtolocal = str
    strfromlocal = str

if not _nativeenviron:
    # now encoding and helper functions are available, recreate the environ
    # dict to be exported to other modules
    environ = dict((tolocal(k.encode(u'utf-8')), tolocal(v.encode(u'utf-8')))
                   for k, v in os.environ.items())

# How to treat ambiguous-width characters. Set to 'wide' to treat as wide.
wide = (environ.get("HGENCODINGAMBIGUOUS", "narrow") == "wide"
        and "WFA" or "WF")

def colwidth(s):
    "Find the column width of a string for display in the local encoding"
    return ucolwidth(s.decode(_sysstr(encoding), u'replace'))

def ucolwidth(d):
    "Find the column width of a Unicode string for display"
    eaw = getattr(unicodedata, 'east_asian_width', None)
    if eaw is not None:
        return sum([eaw(c) in wide and 2 or 1 for c in d])
    return len(d)

def getcols(s, start, c):
    '''Use colwidth to find a c-column substring of s starting at byte
    index start'''
    for x in xrange(start + c, len(s)):
        t = s[start:x]
        if colwidth(t) == c:
            return t

def trim(s, width, ellipsis='', leftside=False):
    """Trim string 's' to at most 'width' columns (including 'ellipsis').

    If 'leftside' is True, left side of string 's' is trimmed.
    'ellipsis' is always placed at trimmed side.

    >>> ellipsis = '+++'
    >>> from . import encoding
    >>> encoding.encoding = 'utf-8'
    >>> t= '1234567890'
    >>> print trim(t, 12, ellipsis=ellipsis)
    1234567890
    >>> print trim(t, 10, ellipsis=ellipsis)
    1234567890
    >>> print trim(t, 8, ellipsis=ellipsis)
    12345+++
    >>> print trim(t, 8, ellipsis=ellipsis, leftside=True)
    +++67890
    >>> print trim(t, 8)
    12345678
    >>> print trim(t, 8, leftside=True)
    34567890
    >>> print trim(t, 3, ellipsis=ellipsis)
    +++
    >>> print trim(t, 1, ellipsis=ellipsis)
    +
    >>> u = u'\u3042\u3044\u3046\u3048\u304a' # 2 x 5 = 10 columns
    >>> t = u.encode(encoding.encoding)
    >>> print trim(t, 12, ellipsis=ellipsis)
    \xe3\x81\x82\xe3\x81\x84\xe3\x81\x86\xe3\x81\x88\xe3\x81\x8a
    >>> print trim(t, 10, ellipsis=ellipsis)
    \xe3\x81\x82\xe3\x81\x84\xe3\x81\x86\xe3\x81\x88\xe3\x81\x8a
    >>> print trim(t, 8, ellipsis=ellipsis)
    \xe3\x81\x82\xe3\x81\x84+++
    >>> print trim(t, 8, ellipsis=ellipsis, leftside=True)
    +++\xe3\x81\x88\xe3\x81\x8a
    >>> print trim(t, 5)
    \xe3\x81\x82\xe3\x81\x84
    >>> print trim(t, 5, leftside=True)
    \xe3\x81\x88\xe3\x81\x8a
    >>> print trim(t, 4, ellipsis=ellipsis)
    +++
    >>> print trim(t, 4, ellipsis=ellipsis, leftside=True)
    +++
    >>> t = '\x11\x22\x33\x44\x55\x66\x77\x88\x99\xaa' # invalid byte sequence
    >>> print trim(t, 12, ellipsis=ellipsis)
    \x11\x22\x33\x44\x55\x66\x77\x88\x99\xaa
    >>> print trim(t, 10, ellipsis=ellipsis)
    \x11\x22\x33\x44\x55\x66\x77\x88\x99\xaa
    >>> print trim(t, 8, ellipsis=ellipsis)
    \x11\x22\x33\x44\x55+++
    >>> print trim(t, 8, ellipsis=ellipsis, leftside=True)
    +++\x66\x77\x88\x99\xaa
    >>> print trim(t, 8)
    \x11\x22\x33\x44\x55\x66\x77\x88
    >>> print trim(t, 8, leftside=True)
    \x33\x44\x55\x66\x77\x88\x99\xaa
    >>> print trim(t, 3, ellipsis=ellipsis)
    +++
    >>> print trim(t, 1, ellipsis=ellipsis)
    +
    """
    try:
        u = s.decode(_sysstr(encoding))
    except UnicodeDecodeError:
        if len(s) <= width: # trimming is not needed
            return s
        width -= len(ellipsis)
        if width <= 0: # no enough room even for ellipsis
            return ellipsis[:width + len(ellipsis)]
        if leftside:
            return ellipsis + s[-width:]
        return s[:width] + ellipsis

    if ucolwidth(u) <= width: # trimming is not needed
        return s

    width -= len(ellipsis)
    if width <= 0: # no enough room even for ellipsis
        return ellipsis[:width + len(ellipsis)]

    if leftside:
        uslice = lambda i: u[i:]
        concat = lambda s: ellipsis + s
    else:
        uslice = lambda i: u[:-i]
        concat = lambda s: s + ellipsis
    for i in xrange(1, len(u)):
        usub = uslice(i)
        if ucolwidth(usub) <= width:
            return concat(usub.encode(_sysstr(encoding)))
    return ellipsis # no enough room for multi-column characters

def _asciilower(s):
    '''convert a string to lowercase if ASCII

    Raises UnicodeDecodeError if non-ASCII characters are found.'''
    s.decode('ascii')
    return s.lower()

def asciilower(s):
    # delay importing avoids cyclic dependency around "parsers" in
    # pure Python build (util => i18n => encoding => parsers => util)
    from . import parsers
    impl = getattr(parsers, 'asciilower', _asciilower)
    global asciilower
    asciilower = impl
    return impl(s)

def _asciiupper(s):
    '''convert a string to uppercase if ASCII

    Raises UnicodeDecodeError if non-ASCII characters are found.'''
    s.decode('ascii')
    return s.upper()

def asciiupper(s):
    # delay importing avoids cyclic dependency around "parsers" in
    # pure Python build (util => i18n => encoding => parsers => util)
    from . import parsers
    impl = getattr(parsers, 'asciiupper', _asciiupper)
    global asciiupper
    asciiupper = impl
    return impl(s)

def lower(s):
    "best-effort encoding-aware case-folding of local string s"
    try:
        return asciilower(s)
    except UnicodeDecodeError:
        pass
    try:
        if isinstance(s, localstr):
            u = s._utf8.decode("utf-8")
        else:
            u = s.decode(_sysstr(encoding), _sysstr(encodingmode))

        lu = u.lower()
        if u == lu:
            return s # preserve localstring
        return lu.encode(_sysstr(encoding))
    except UnicodeError:
        return s.lower() # we don't know how to fold this except in ASCII
    except LookupError as k:
        raise error.Abort(k, hint="please check your locale settings")

def upper(s):
    "best-effort encoding-aware case-folding of local string s"
    try:
        return asciiupper(s)
    except UnicodeDecodeError:
        return upperfallback(s)

def upperfallback(s):
    try:
        if isinstance(s, localstr):
            u = s._utf8.decode("utf-8")
        else:
            u = s.decode(_sysstr(encoding), _sysstr(encodingmode))

        uu = u.upper()
        if u == uu:
            return s # preserve localstring
        return uu.encode(_sysstr(encoding))
    except UnicodeError:
        return s.upper() # we don't know how to fold this except in ASCII
    except LookupError as k:
        raise error.Abort(k, hint="please check your locale settings")

class normcasespecs(object):
    '''what a platform's normcase does to ASCII strings

    This is specified per platform, and should be consistent with what normcase
    on that platform actually does.

    lower: normcase lowercases ASCII strings
    upper: normcase uppercases ASCII strings
    other: the fallback function should always be called

    This should be kept in sync with normcase_spec in util.h.'''
    lower = -1
    upper = 1
    other = 0

_jsonmap = []
_jsonmap.extend("\\u%04x" % x for x in range(32))
_jsonmap.extend(chr(x) for x in range(32, 127))
_jsonmap.append('\\u007f')
_jsonmap[0x09] = '\\t'
_jsonmap[0x0a] = '\\n'
_jsonmap[0x22] = '\\"'
_jsonmap[0x5c] = '\\\\'
_jsonmap[0x08] = '\\b'
_jsonmap[0x0c] = '\\f'
_jsonmap[0x0d] = '\\r'
_paranoidjsonmap = _jsonmap[:]
_paranoidjsonmap[0x3c] = '\\u003c'  # '<' (e.g. escape "</script>")
_paranoidjsonmap[0x3e] = '\\u003e'  # '>'
_jsonmap.extend(chr(x) for x in range(128, 256))

def jsonescape(s, paranoid=False):
    '''returns a string suitable for JSON

    JSON is problematic for us because it doesn't support non-Unicode
    bytes. To deal with this, we take the following approach:

    - localstr objects are converted back to UTF-8
    - valid UTF-8/ASCII strings are passed as-is
    - other strings are converted to UTF-8b surrogate encoding
    - apply JSON-specified string escaping

    (escapes are doubled in these tests)

    >>> jsonescape('this is a test')
    'this is a test'
    >>> jsonescape('escape characters: \\0 \\x0b \\x7f')
    'escape characters: \\\\u0000 \\\\u000b \\\\u007f'
    >>> jsonescape('escape characters: \\t \\n \\r \\" \\\\')
    'escape characters: \\\\t \\\\n \\\\r \\\\" \\\\\\\\'
    >>> jsonescape('a weird byte: \\xdd')
    'a weird byte: \\xed\\xb3\\x9d'
    >>> jsonescape('utf-8: caf\\xc3\\xa9')
    'utf-8: caf\\xc3\\xa9'
    >>> jsonescape('')
    ''

    If paranoid, non-ascii and common troublesome characters are also escaped.
    This is suitable for web output.

    >>> jsonescape('escape boundary: \\x7e \\x7f \\xc2\\x80', paranoid=True)
    'escape boundary: ~ \\\\u007f \\\\u0080'
    >>> jsonescape('a weird byte: \\xdd', paranoid=True)
    'a weird byte: \\\\udcdd'
    >>> jsonescape('utf-8: caf\\xc3\\xa9', paranoid=True)
    'utf-8: caf\\\\u00e9'
    >>> jsonescape('non-BMP: \\xf0\\x9d\\x84\\x9e', paranoid=True)
    'non-BMP: \\\\ud834\\\\udd1e'
    >>> jsonescape('<foo@example.org>', paranoid=True)
    '\\\\u003cfoo@example.org\\\\u003e'
    '''

    if paranoid:
        jm = _paranoidjsonmap
    else:
        jm = _jsonmap

    u8chars = toutf8b(s)
    try:
        return ''.join(jm[x] for x in bytearray(u8chars))  # fast path
    except IndexError:
        pass
    # non-BMP char is represented as UTF-16 surrogate pair
    u16codes = array.array('H', u8chars.decode('utf-8').encode('utf-16'))
    u16codes.pop(0)  # drop BOM
    return ''.join(jm[x] if x < 128 else '\\u%04x' % x for x in u16codes)

_utf8len = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 4]

def getutf8char(s, pos):
    '''get the next full utf-8 character in the given string, starting at pos

    Raises a UnicodeError if the given location does not start a valid
    utf-8 character.
    '''

    # find how many bytes to attempt decoding from first nibble
    l = _utf8len[ord(s[pos]) >> 4]
    if not l: # ascii
        return s[pos]

    c = s[pos:pos + l]
    # validate with attempted decode
    c.decode("utf-8")
    return c

def toutf8b(s):
    '''convert a local, possibly-binary string into UTF-8b

    This is intended as a generic method to preserve data when working
    with schemes like JSON and XML that have no provision for
    arbitrary byte strings. As Mercurial often doesn't know
    what encoding data is in, we use so-called UTF-8b.

    If a string is already valid UTF-8 (or ASCII), it passes unmodified.
    Otherwise, unsupported bytes are mapped to UTF-16 surrogate range,
    uDC00-uDCFF.

    Principles of operation:

    - ASCII and UTF-8 data successfully round-trips and is understood
      by Unicode-oriented clients
    - filenames and file contents in arbitrary other encodings can have
      be round-tripped or recovered by clueful clients
    - local strings that have a cached known UTF-8 encoding (aka
      localstr) get sent as UTF-8 so Unicode-oriented clients get the
      Unicode data they want
    - because we must preserve UTF-8 bytestring in places such as
      filenames, metadata can't be roundtripped without help

    (Note: "UTF-8b" often refers to decoding a mix of valid UTF-8 and
    arbitrary bytes into an internal Unicode format that can be
    re-encoded back into the original. Here we are exposing the
    internal surrogate encoding as a UTF-8 string.)
    '''

    if "\xed" not in s:
        if isinstance(s, localstr):
            return s._utf8
        try:
            s.decode('utf-8')
            return s
        except UnicodeDecodeError:
            pass

    r = ""
    pos = 0
    l = len(s)
    while pos < l:
        try:
            c = getutf8char(s, pos)
            if "\xed\xb0\x80" <= c <= "\xed\xb3\xbf":
                # have to re-escape existing U+DCxx characters
                c = unichr(0xdc00 + ord(s[pos])).encode('utf-8')
                pos += 1
            else:
                pos += len(c)
        except UnicodeDecodeError:
            c = unichr(0xdc00 + ord(s[pos])).encode('utf-8')
            pos += 1
        r += c
    return r

def fromutf8b(s):
    '''Given a UTF-8b string, return a local, possibly-binary string.

    return the original binary string. This
    is a round-trip process for strings like filenames, but metadata
    that's was passed through tolocal will remain in UTF-8.

    >>> roundtrip = lambda x: fromutf8b(toutf8b(x)) == x
    >>> m = "\\xc3\\xa9\\x99abcd"
    >>> toutf8b(m)
    '\\xc3\\xa9\\xed\\xb2\\x99abcd'
    >>> roundtrip(m)
    True
    >>> roundtrip("\\xc2\\xc2\\x80")
    True
    >>> roundtrip("\\xef\\xbf\\xbd")
    True
    >>> roundtrip("\\xef\\xef\\xbf\\xbd")
    True
    >>> roundtrip("\\xf1\\x80\\x80\\x80\\x80")
    True
    '''

    # fast path - look for uDxxx prefixes in s
    if "\xed" not in s:
        return s

    # We could do this with the unicode type but some Python builds
    # use UTF-16 internally (issue5031) which causes non-BMP code
    # points to be escaped. Instead, we use our handy getutf8char
    # helper again to walk the string without "decoding" it.

    r = ""
    pos = 0
    l = len(s)
    while pos < l:
        c = getutf8char(s, pos)
        pos += len(c)
        # unescape U+DCxx characters
        if "\xed\xb0\x80" <= c <= "\xed\xb3\xbf":
            c = chr(ord(c.decode("utf-8")) & 0xff)
        r += c
    return r