view mercurial/sshpeer.py @ 31765:264baeef3588

show: new extension for displaying various repository data Currently, Mercurial has a number of commands to show information. And, there are features coming down the pipe that will introduce more commands for showing information. Currently, when introducing a new class of data or a view that we wish to expose to the user, the strategy is to introduce a new command or overload an existing command, sometimes both. For example, there is a desire to formalize the wip/smartlog/underway/mine functionality that many have devised. There is also a desire to introduce a "topics" concept. Others would like views of "the current stack." In the current model, we'd need a new command for wip/smartlog/etc (that behaves a lot like a pre-defined alias of `hg log`). For topics, we'd likely overload `hg topic[s]` to both display and manipulate topics. Adding new commands for every pre-defined query doesn't scale well and pollutes `hg help`. Overloading commands to perform read-only and write operations is arguably an UX anti-pattern: while having all functionality for a given concept in one command is nice, having a single command doing multiple discrete operations is not. Furthermore, a user may be surprised that a command they thought was read-only actually changes something. We discussed this at the Mercurial 4.0 Sprint in Paris and decided that having a single command where we could hang pre-defined views of various data would be a good idea. Having such a command would: * Help prevent an explosion of new query-related commands * Create a clear separation between read and write operations (mitigates footguns) * Avoids overloading the meaning of commands that manipulate data (bookmark, tag, branch, etc) (while we can't take away the existing behavior for BC reasons, we now won't introduce this behavior on new commands) * Allows users to discover informational views more easily by aggregating them in a single location * Lowers the barrier to creating the new views (since the barrier to creating a top-level command is relatively high) So, this commit introduces the `hg show` command via the "show" extension. This command accepts a positional argument of the "view" to show. New views can be registered with a decorator. To prove it works, we implement the "bookmarks" view, which shows a table of bookmarks and their associated nodes. We introduce a new style to hold everything used by `hg show`. For our initial bookmarks view, the output varies from `hg bookmarks`: * Padding is performed in the template itself as opposed to Python * Revision integers are not shown * shortest() is used to display a 5 character node by default (as opposed to static 12 characters) I chose to implement the "bookmarks" view first because it is simple and shouldn't invite too much bikeshedding that detracts from the evaluation of `hg show` itself. But there is an important point to consider: we now have 2 ways to show a list of bookmarks. I'm not a fan of introducing multiple ways to do very similar things. So it might be worth discussing how we wish to tackle this issue for bookmarks, tags, branches, MQ series, etc. I also made the choice of explicitly declaring the default show template not part of the standard BC guarantees. History has shown that we make mistakes and poor choices with output formatting but can't fix these mistakes later because random tools are parsing output and we don't want to break these tools. Optimizing for human consumption is one of my goals for `hg show`. So, by not covering the formatting as part of BC, the barrier to future change is much lower and humans benefit. There are some improvements that can be made to formatting. For example, we don't yet use label() in the templates. We obviously want this for color. But I'm not sure if we should reuse the existing log.* labels or invent new ones. I figure we can punt that to a follow-up. At the aforementioned Sprint, we discussed and discarded various alternatives to `hg show`. We considered making `hg log <view>` perform this behavior. The main reason we can't do this is because a positional argument to `hg log` can be a file path and if there is a conflict between a path name and a view name, behavior is ambiguous. We could have introduced `hg log --view` or similar, but we felt that required too much typing (we don't want to require a command flag to show a view) and wasn't very discoverable. Furthermore, `hg log` is optimized for showing changelog data and there are things that `hg display` could display that aren't changelog centric. There were concerns about using "show" as the command name. Some users already have a "show" alias that is similar to `hg export`. There were also concerns that Git users adapted to `git show` would be confused by `hg show`'s different behavior. The main difference here is `git show` prints an `hg export` like view of the current commit by default and `hg show` requires an argument. `git show` can also display any Git object. `git show` does not support displaying more complex views: just single objects. If we implemented `hg show <hash>` or `hg show <identifier>`, `hg show` would be a superset of `git show`. Although, I'm hesitant to do that at this time because I view `hg show` as a higher-level querying command and there are namespace collisions between valid identifiers and registered views. There is also a prefix collision with `hg showconfig`, which is an alias of `hg config`. We also considered `hg view`, but that is already used by the "hgk" extension. `hg display` was also proposed at one point. It has a prefix collision with `hg diff`. General consensus was "show" or "view" are the best verbs. And since "view" was taken, "show" was chosen. There are a number of inline TODOs in this patch. Some of these represent decisions yet to be made. Others represent features requiring non-trivial complexity. Rather than bloat the patch or invite additional bikeshedding, I figured I'd document future enhancements via TODO so we can get a minimal implmentation landed. Something is better than nothing.
author Gregory Szorc <gregory.szorc@gmail.com>
date Fri, 24 Mar 2017 19:19:00 -0700
parents 764f4581d1f3
children cc2382b60007
line wrap: on
line source

# sshpeer.py - ssh repository proxy class for mercurial
#
# Copyright 2005, 2006 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import

import re

from .i18n import _
from . import (
    error,
    util,
    wireproto,
)

class remotelock(object):
    def __init__(self, repo):
        self.repo = repo
    def release(self):
        self.repo.unlock()
        self.repo = None
    def __enter__(self):
        return self
    def __exit__(self, exc_type, exc_val, exc_tb):
        if self.repo:
            self.release()
    def __del__(self):
        if self.repo:
            self.release()

def _serverquote(s):
    if not s:
        return s
    '''quote a string for the remote shell ... which we assume is sh'''
    if re.match('[a-zA-Z0-9@%_+=:,./-]*$', s):
        return s
    return "'%s'" % s.replace("'", "'\\''")

def _forwardoutput(ui, pipe):
    """display all data currently available on pipe as remote output.

    This is non blocking."""
    s = util.readpipe(pipe)
    if s:
        for l in s.splitlines():
            ui.status(_("remote: "), l, '\n')

class doublepipe(object):
    """Operate a side-channel pipe in addition of a main one

    The side-channel pipe contains server output to be forwarded to the user
    input. The double pipe will behave as the "main" pipe, but will ensure the
    content of the "side" pipe is properly processed while we wait for blocking
    call on the "main" pipe.

    If large amounts of data are read from "main", the forward will cease after
    the first bytes start to appear. This simplifies the implementation
    without affecting actual output of sshpeer too much as we rarely issue
    large read for data not yet emitted by the server.

    The main pipe is expected to be a 'bufferedinputpipe' from the util module
    that handle all the os specific bites. This class lives in this module
    because it focus on behavior specific to the ssh protocol."""

    def __init__(self, ui, main, side):
        self._ui = ui
        self._main = main
        self._side = side

    def _wait(self):
        """wait until some data are available on main or side

        return a pair of boolean (ismainready, issideready)

        (This will only wait for data if the setup is supported by `util.poll`)
        """
        if getattr(self._main, 'hasbuffer', False): # getattr for classic pipe
            return (True, True) # main has data, assume side is worth poking at.
        fds = [self._main.fileno(), self._side.fileno()]
        try:
            act = util.poll(fds)
        except NotImplementedError:
            # non supported yet case, assume all have data.
            act = fds
        return (self._main.fileno() in act, self._side.fileno() in act)

    def write(self, data):
        return self._call('write', data)

    def read(self, size):
        return self._call('read', size)

    def readline(self):
        return self._call('readline')

    def _call(self, methname, data=None):
        """call <methname> on "main", forward output of "side" while blocking
        """
        # data can be '' or 0
        if (data is not None and not data) or self._main.closed:
            _forwardoutput(self._ui, self._side)
            return ''
        while True:
            mainready, sideready = self._wait()
            if sideready:
                _forwardoutput(self._ui, self._side)
            if mainready:
                meth = getattr(self._main, methname)
                if data is None:
                    return meth()
                else:
                    return meth(data)

    def close(self):
        return self._main.close()

    def flush(self):
        return self._main.flush()

class sshpeer(wireproto.wirepeer):
    def __init__(self, ui, path, create=False):
        self._url = path
        self.ui = ui
        self.pipeo = self.pipei = self.pipee = None

        u = util.url(path, parsequery=False, parsefragment=False)
        if u.scheme != 'ssh' or not u.host or u.path is None:
            self._abort(error.RepoError(_("couldn't parse location %s") % path))

        self.user = u.user
        if u.passwd is not None:
            self._abort(error.RepoError(_("password in URL not supported")))
        self.host = u.host
        self.port = u.port
        self.path = u.path or "."

        sshcmd = self.ui.config("ui", "ssh", "ssh")
        remotecmd = self.ui.config("ui", "remotecmd", "hg")

        args = util.sshargs(sshcmd,
                            _serverquote(self.host),
                            _serverquote(self.user),
                            _serverquote(self.port))

        if create:
            cmd = '%s %s %s' % (sshcmd, args,
                util.shellquote("%s init %s" %
                    (_serverquote(remotecmd), _serverquote(self.path))))
            ui.debug('running %s\n' % cmd)
            res = ui.system(cmd, blockedtag='sshpeer')
            if res != 0:
                self._abort(error.RepoError(_("could not create remote repo")))

        self._validaterepo(sshcmd, args, remotecmd)

    def url(self):
        return self._url

    def _validaterepo(self, sshcmd, args, remotecmd):
        # cleanup up previous run
        self.cleanup()

        cmd = '%s %s %s' % (sshcmd, args,
            util.shellquote("%s -R %s serve --stdio" %
                (_serverquote(remotecmd), _serverquote(self.path))))
        self.ui.debug('running %s\n' % cmd)
        cmd = util.quotecommand(cmd)

        # while self.subprocess isn't used, having it allows the subprocess to
        # to clean up correctly later
        #
        # no buffer allow the use of 'select'
        # feel free to remove buffering and select usage when we ultimately
        # move to threading.
        sub = util.popen4(cmd, bufsize=0)
        self.pipeo, self.pipei, self.pipee, self.subprocess = sub

        self.pipei = util.bufferedinputpipe(self.pipei)
        self.pipei = doublepipe(self.ui, self.pipei, self.pipee)
        self.pipeo = doublepipe(self.ui, self.pipeo, self.pipee)

        # skip any noise generated by remote shell
        self._callstream("hello")
        r = self._callstream("between", pairs=("%s-%s" % ("0"*40, "0"*40)))
        lines = ["", "dummy"]
        max_noise = 500
        while lines[-1] and max_noise:
            l = r.readline()
            self.readerr()
            if lines[-1] == "1\n" and l == "\n":
                break
            if l:
                self.ui.debug("remote: ", l)
            lines.append(l)
            max_noise -= 1
        else:
            self._abort(error.RepoError(_('no suitable response from '
                                          'remote hg')))

        self._caps = set()
        for l in reversed(lines):
            if l.startswith("capabilities:"):
                self._caps.update(l[:-1].split(":")[1].split())
                break

    def _capabilities(self):
        return self._caps

    def readerr(self):
        _forwardoutput(self.ui, self.pipee)

    def _abort(self, exception):
        self.cleanup()
        raise exception

    def cleanup(self):
        if self.pipeo is None:
            return
        self.pipeo.close()
        self.pipei.close()
        try:
            # read the error descriptor until EOF
            for l in self.pipee:
                self.ui.status(_("remote: "), l)
        except (IOError, ValueError):
            pass
        self.pipee.close()

    __del__ = cleanup

    def _submitbatch(self, req):
        rsp = self._callstream("batch", cmds=wireproto.encodebatchcmds(req))
        available = self._getamount()
        # TODO this response parsing is probably suboptimal for large
        # batches with large responses.
        toread = min(available, 1024)
        work = rsp.read(toread)
        available -= toread
        chunk = work
        while chunk:
            while ';' in work:
                one, work = work.split(';', 1)
                yield wireproto.unescapearg(one)
            toread = min(available, 1024)
            chunk = rsp.read(toread)
            available -= toread
            work += chunk
        yield wireproto.unescapearg(work)

    def _callstream(self, cmd, **args):
        self.ui.debug("sending %s command\n" % cmd)
        self.pipeo.write("%s\n" % cmd)
        _func, names = wireproto.commands[cmd]
        keys = names.split()
        wireargs = {}
        for k in keys:
            if k == '*':
                wireargs['*'] = args
                break
            else:
                wireargs[k] = args[k]
                del args[k]
        for k, v in sorted(wireargs.iteritems()):
            self.pipeo.write("%s %d\n" % (k, len(v)))
            if isinstance(v, dict):
                for dk, dv in v.iteritems():
                    self.pipeo.write("%s %d\n" % (dk, len(dv)))
                    self.pipeo.write(dv)
            else:
                self.pipeo.write(v)
        self.pipeo.flush()

        return self.pipei

    def _callcompressable(self, cmd, **args):
        return self._callstream(cmd, **args)

    def _call(self, cmd, **args):
        self._callstream(cmd, **args)
        return self._recv()

    def _callpush(self, cmd, fp, **args):
        r = self._call(cmd, **args)
        if r:
            return '', r
        for d in iter(lambda: fp.read(4096), ''):
            self._send(d)
        self._send("", flush=True)
        r = self._recv()
        if r:
            return '', r
        return self._recv(), ''

    def _calltwowaystream(self, cmd, fp, **args):
        r = self._call(cmd, **args)
        if r:
            # XXX needs to be made better
            raise error.Abort(_('unexpected remote reply: %s') % r)
        for d in iter(lambda: fp.read(4096), ''):
            self._send(d)
        self._send("", flush=True)
        return self.pipei

    def _getamount(self):
        l = self.pipei.readline()
        if l == '\n':
            self.readerr()
            msg = _('check previous remote output')
            self._abort(error.OutOfBandError(hint=msg))
        self.readerr()
        try:
            return int(l)
        except ValueError:
            self._abort(error.ResponseError(_("unexpected response:"), l))

    def _recv(self):
        return self.pipei.read(self._getamount())

    def _send(self, data, flush=False):
        self.pipeo.write("%d\n" % len(data))
        if data:
            self.pipeo.write(data)
        if flush:
            self.pipeo.flush()
        self.readerr()

    def lock(self):
        self._call("lock")
        return remotelock(self)

    def unlock(self):
        self._call("unlock")

    def addchangegroup(self, cg, source, url, lock=None):
        '''Send a changegroup to the remote server.  Return an integer
        similar to unbundle(). DEPRECATED, since it requires locking the
        remote.'''
        d = self._call("addchangegroup")
        if d:
            self._abort(error.RepoError(_("push refused: %s") % d))
        for d in iter(lambda: cg.read(4096), ''):
            self.pipeo.write(d)
            self.readerr()

        self.pipeo.flush()

        self.readerr()
        r = self._recv()
        if not r:
            return 1
        try:
            return int(r)
        except ValueError:
            self._abort(error.ResponseError(_("unexpected response:"), r))

instance = sshpeer