view tests/test-fuzz-targets.t @ 44216:281b6690e646

packaging: add support for PyOxidizer I've successfully built Mercurial on the development tip of PyOxidizer on Linux and Windows. It mostly "just works" on Linux. Windows is a bit more finicky. In-memory resource files are probably not all working correctly due to bugs in PyOxidizer's naming of modules. PyOxidizer now now supports installing files next to the produced binary. (We do this for templates in the added file.) So a workaround should be available. Also, since the last time I submitted support for PyOxidizer, PyOxidizer gained the ability to auto-generate Rust projects to build executables. So we don't need to worry about vendoring any Rust code to initially support PyOxidizer. However, at some point we will likely want to write our own command line driver that embeds a Python interpreter via PyOxidizer so we can run Rust code outside the confines of a Python interpreter. But that will be a follow-up. I would also like to add packaging.py CLI commands to build PyOxidizer distributions. This can come later, if ever. PyOxidizer's new "targets" feature makes it really easy to define packaging tasks in its Starlark configuration file. While not much is implemented yet, eventually we should be able to produce MSIs, etc using a `pyoxidizer build` one-liner. We'll get there... Differential Revision: https://phab.mercurial-scm.org/D7450
author Gregory Szorc <gregory.szorc@gmail.com>
date Sun, 26 Jan 2020 16:23:57 -0800
parents 19da643dc10c
children b918494198f7
line wrap: on
line source

#require test-repo

  $ cd $TESTDIR/../contrib/fuzz
  $ OUT=$TESTTMP ; export OUT

which(1) could exit nonzero, but that's fine because we'll still end
up without a valid executable, so we don't need to check $? here.

  $ if which gmake >/dev/null 2>&1; then
  >     MAKE=gmake
  > else
  >     MAKE=make
  > fi

  $ havefuzz() {
  >     cat > $TESTTMP/dummy.cc <<EOF
  > #include <stdlib.h>
  > #include <stdint.h>
  > int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) { return 0; }
  > int main(int argc, char **argv) {
  >     const char data[] = "asdf";
  >     return LLVMFuzzerTestOneInput((const uint8_t *)data, 4);
  > }
  > EOF
  >     $CXX $TESTTMP/dummy.cc -o $TESTTMP/dummy \
  >        -fsanitize=fuzzer-no-link,address || return 1
  > }

#if clang-libfuzzer
  $ CXX=clang++ havefuzz || exit 80
  $ $MAKE -s clean all PYTHON_CONFIG=`which python-config`
#endif
#if no-clang-libfuzzer clang-6.0
  $ CXX=clang++-6.0 havefuzz || exit 80
  $ $MAKE -s clean all CC=clang-6.0 CXX=clang++-6.0 PYTHON_CONFIG=`which python-config`
#endif
#if no-clang-libfuzzer no-clang-6.0
  $ exit 80
#endif

  $ cd $TESTTMP

Run each fuzzer using dummy.cc as a fake input, to make sure it runs
at all. In the future we should instead unpack the corpus for each
fuzzer and use that instead.

  $ for fuzzer in `ls *_fuzzer | sort` ; do
  >   echo run $fuzzer...
  >   ./$fuzzer dummy.cc > /dev/null 2>&1 
  > done
  run bdiff_fuzzer...
  run dirs_fuzzer...
  run dirstate_fuzzer...
  run fm1readmarkers_fuzzer...
  run fncache_fuzzer...
  run jsonescapeu8fast_fuzzer...
  run manifest_fuzzer...
  run mpatch_fuzzer...
  run revlog_fuzzer...
  run xdiff_fuzzer...

Clean up.
  $ cd $TESTDIR/../contrib/fuzz
  $ $MAKE -s clean