Mercurial > hg
view mercurial/lsprofcalltree.py @ 36855:2cdf47e14c30
hgweb: refactor the request draining code
The previous code for draining was only invoked in a few places in
the wire protocol. Behavior wasn't consist. Furthermore, it was
difficult to reason about.
With us converting the input stream to a capped reader, it is now
safe to always drain the input stream when its size is known because
we can never overrun the input and read into the next HTTP request.
The only question is "should we?"
This commit changes the draining code so every request is examined.
Draining now kicks in for a few requests where it wouldn't before.
But I think the code is sufficiently restricted so the behavior is
safe. Possibly the most dangerous part of this code is the issuing
of Connection: close for POST and PUT requests that don't have a
Content-Length. I don't think there are any such uses in our WSGI
application, so this should be safe.
In the near future, I plan to significantly refactor the WSGI
response handling. I anticipate this code evolving a bit. So any
minor regressions around draining or connection closing behavior
might be fixed as a result of that work.
All tests pass with this change. That scares me a bit because it
means we are lacking low-level tests for the HTTP protocol.
Differential Revision: https://phab.mercurial-scm.org/D2769
author | Gregory Szorc <gregory.szorc@gmail.com> |
---|---|
date | Sat, 10 Mar 2018 11:03:45 -0800 |
parents | 5a988b3c9645 |
children | 1ae0faa14797 |
line wrap: on
line source
""" lsprofcalltree.py - lsprof output which is readable by kcachegrind Authors: * David Allouche <david <at> allouche.net> * Jp Calderone & Itamar Shtull-Trauring * Johan Dahlin This software may be used and distributed according to the terms of the GNU General Public License, incorporated herein by reference. """ from __future__ import absolute_import, print_function def label(code): if isinstance(code, str): return '~' + code # built-in functions ('~' sorts at the end) else: return '%s %s:%d' % (code.co_name, code.co_filename, code.co_firstlineno) class KCacheGrind(object): def __init__(self, profiler): self.data = profiler.getstats() self.out_file = None def output(self, out_file): self.out_file = out_file print('events: Ticks', file=out_file) self._print_summary() for entry in self.data: self._entry(entry) def _print_summary(self): max_cost = 0 for entry in self.data: totaltime = int(entry.totaltime * 1000) max_cost = max(max_cost, totaltime) print('summary: %d' % max_cost, file=self.out_file) def _entry(self, entry): out_file = self.out_file code = entry.code if isinstance(code, str): print('fi=~', file=out_file) else: print('fi=%s' % code.co_filename, file=out_file) print('fn=%s' % label(code), file=out_file) inlinetime = int(entry.inlinetime * 1000) if isinstance(code, str): print('0 ', inlinetime, file=out_file) else: print('%d %d' % (code.co_firstlineno, inlinetime), file=out_file) # recursive calls are counted in entry.calls if entry.calls: calls = entry.calls else: calls = [] if isinstance(code, str): lineno = 0 else: lineno = code.co_firstlineno for subentry in calls: self._subentry(lineno, subentry) print(file=out_file) def _subentry(self, lineno, subentry): out_file = self.out_file code = subentry.code print('cfn=%s' % label(code), file=out_file) if isinstance(code, str): print('cfi=~', file=out_file) print('calls=%d 0' % subentry.callcount, file=out_file) else: print('cfi=%s' % code.co_filename, file=out_file) print('calls=%d %d' % ( subentry.callcount, code.co_firstlineno), file=out_file) totaltime = int(subentry.totaltime * 1000) print('%d %d' % (lineno, totaltime), file=out_file)