phases: large rewrite on retract boundary
The new code is still pure Python, so we still have room to going significantly
faster. However its complexity of the complex part is `O(|[min_new_draft, tip]|)` instead of
`O(|[min_draft, tip]|` which should help tremendously one repository with old
draft (like mercurial-devel or mozilla-try).
This is especially useful as the most common "retract boundary" operation
happens when we commit/rewrite new drafts or when we push new draft to a
non-publishing server. In this case, the smallest new_revs is very close to the
tip and there is very few work to do.
A few smaller optimisation could be done for these cases and will be introduced in
later changesets.
We still have iterate over large sets of roots, but this is already a great
improvement for a very small amount of work. We gather information on the
affected changeset as we go as we can put it to use in the next changesets.
This extra data collection might slowdown the `register_new` case a bit, however
for register_new, it should not really matters. The set of new nodes is either
small, so the impact is negligible, or the set of new nodes is large, and the
amount of work to do to had them will dominate the overhead the collecting
information in `changed_revs`.
As this new code compute the changes on the fly, it unlock other interesting
improvement to be done in later changeset.
# test-batching.py - tests for transparent command batching
#
# Copyright 2011 Peter Arrenbrecht <peter@arrenbrecht.ch>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
import contextlib
from mercurial import (
localrepo,
pycompat,
wireprotov1peer,
)
def bprint(*bs):
print(*[pycompat.sysstr(b) for b in bs])
# equivalent of repo.repository
class thing:
def hello(self):
return b"Ready."
# equivalent of localrepo.localrepository
class localthing(thing):
def foo(self, one, two=None):
if one:
return b"%s and %s" % (
one,
two,
)
return b"Nope"
def bar(self, b, a):
return b"%s und %s" % (
b,
a,
)
def greet(self, name=None):
return b"Hello, %s" % name
@contextlib.contextmanager
def commandexecutor(self):
e = localrepo.localcommandexecutor(self)
try:
yield e
finally:
e.close()
# usage of "thing" interface
def use(it):
# Direct call to base method shared between client and server.
bprint(it.hello())
# Direct calls to proxied methods. They cause individual roundtrips.
bprint(it.foo(b"Un", two=b"Deux"))
bprint(it.bar(b"Eins", b"Zwei"))
# Batched call to a couple of proxied methods.
with it.commandexecutor() as e:
ffoo = e.callcommand(b'foo', {b'one': b'One', b'two': b'Two'})
fbar = e.callcommand(b'bar', {b'b': b'Eins', b'a': b'Zwei'})
fbar2 = e.callcommand(b'bar', {b'b': b'Uno', b'a': b'Due'})
bprint(ffoo.result())
bprint(fbar.result())
bprint(fbar2.result())
# local usage
mylocal = localthing()
print()
bprint(b"== Local")
use(mylocal)
# demo remoting; mimicks what wireproto and HTTP/SSH do
# shared
def escapearg(plain):
return (
plain.replace(b':', b'::')
.replace(b',', b':,')
.replace(b';', b':;')
.replace(b'=', b':=')
)
def unescapearg(escaped):
return (
escaped.replace(b':=', b'=')
.replace(b':;', b';')
.replace(b':,', b',')
.replace(b'::', b':')
)
# server side
# equivalent of wireproto's global functions
class server:
def __init__(self, local):
self.local = local
def _call(self, name, args):
args = dict(arg.split(b'=', 1) for arg in args)
return getattr(self, name)(**args)
def perform(self, req):
bprint(b"REQ:", req)
name, args = req.split(b'?', 1)
args = args.split(b'&')
vals = dict(arg.split(b'=', 1) for arg in args)
res = getattr(self, pycompat.sysstr(name))(**pycompat.strkwargs(vals))
bprint(b" ->", res)
return res
def batch(self, cmds):
res = []
for pair in cmds.split(b';'):
name, args = pair.split(b':', 1)
vals = {}
for a in args.split(b','):
if a:
n, v = a.split(b'=')
vals[n] = unescapearg(v)
res.append(
escapearg(
getattr(self, pycompat.sysstr(name))(
**pycompat.strkwargs(vals)
)
)
)
return b';'.join(res)
def foo(self, one, two):
return mangle(self.local.foo(unmangle(one), unmangle(two)))
def bar(self, b, a):
return mangle(self.local.bar(unmangle(b), unmangle(a)))
def greet(self, name):
return mangle(self.local.greet(unmangle(name)))
myserver = server(mylocal)
# local side
# equivalent of wireproto.encode/decodelist, that is, type-specific marshalling
# here we just transform the strings a bit to check we're properly en-/decoding
def mangle(s):
return b''.join(pycompat.bytechr(ord(c) + 1) for c in pycompat.bytestr(s))
def unmangle(s):
return b''.join(pycompat.bytechr(ord(c) - 1) for c in pycompat.bytestr(s))
# equivalent of wireproto.wirerepository and something like http's wire format
class remotething(thing):
def __init__(self, server):
self.server = server
def _submitone(self, name, args):
req = name + b'?' + b'&'.join([b'%s=%s' % (n, v) for n, v in args])
return self.server.perform(req)
def _submitbatch(self, cmds):
req = []
for name, args in cmds:
args = b','.join(n + b'=' + escapearg(v) for n, v in args)
req.append(name + b':' + args)
req = b';'.join(req)
res = self._submitone(
b'batch',
[
(
b'cmds',
req,
)
],
)
for r in res.split(b';'):
yield r
@contextlib.contextmanager
def commandexecutor(self):
e = wireprotov1peer.peerexecutor(self)
try:
yield e
finally:
e.close()
@wireprotov1peer.batchable
def foo(self, one, two=None):
encoded_args = [
(
b'one',
mangle(one),
),
(
b'two',
mangle(two),
),
]
return encoded_args, unmangle
@wireprotov1peer.batchable
def bar(self, b, a):
return [
(
b'b',
mangle(b),
),
(
b'a',
mangle(a),
),
], unmangle
# greet is coded directly. It therefore does not support batching. If it
# does appear in a batch, the batch is split around greet, and the call to
# greet is done in its own roundtrip.
def greet(self, name=None):
return unmangle(
self._submitone(
b'greet',
[
(
b'name',
mangle(name),
)
],
)
)
# demo remote usage
myproxy = remotething(myserver)
print()
bprint(b"== Remote")
use(myproxy)