view mercurial/i18n.py @ 37631:2f626233859b

wireproto: implement batching on peer executor interface This is a bit more complicated than non-batch requests because we need to buffer sends until the last request arrives *and* we need to support resolving futures as data arrives from the remote. In a classical concurrent.futures executor model, the future "starts" as soon as it is submitted. However, we have nothing to start until the last command is submitted. If we did nothing, calling result() would deadlock, since the future hasn't "started." So in the case where we queue the command, we return a special future type whose result() will trigger sendcommands(). This eliminates the deadlock potential. It also serves as a check against callers who may be calling result() prematurely, as it will prevent any subsequent callcommands() from working. This behavior is slightly annoying and a bit restrictive. But it's the world that half duplex connections forces on us. In order to support streaming responses, we were previously using a generator. But with a futures-based API, we're using futures and not generators. So in order to get streaming, we need a background thread to read data from the server. The approach taken in this patch is to leverage the ThreadPoolExecutor from concurrent.futures for managing a background thread. We create an executor and future that resolves when all response data is processed (or an error occurs). When exiting the context manager, we wait on that background reading before returning. I was hoping we could manually spin up a threading.Thread and this would be simple. But I ran into a few deadlocks when implementing. After looking at the source code to concurrent.futures, I figured it would just be easier to use a ThreadPoolExecutor than implement all the code needed to manually manage a thread. To prove this works, a use of the batch API in discovery has been updated. Differential Revision: https://phab.mercurial-scm.org/D3269
author Gregory Szorc <gregory.szorc@gmail.com>
date Fri, 13 Apr 2018 11:02:34 -0700
parents 5bc7ff103081
children 79dd61a4554f
line wrap: on
line source

# i18n.py - internationalization support for mercurial
#
# Copyright 2005, 2006 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import

import gettext as gettextmod
import locale
import os
import sys

from . import (
    encoding,
    pycompat,
)

# modelled after templater.templatepath:
if getattr(sys, 'frozen', None) is not None:
    module = pycompat.sysexecutable
else:
    module = pycompat.fsencode(__file__)

try:
    unicode
except NameError:
    unicode = str

_languages = None
if (pycompat.iswindows
    and 'LANGUAGE' not in encoding.environ
    and 'LC_ALL' not in encoding.environ
    and 'LC_MESSAGES' not in encoding.environ
    and 'LANG' not in encoding.environ):
    # Try to detect UI language by "User Interface Language Management" API
    # if no locale variables are set. Note that locale.getdefaultlocale()
    # uses GetLocaleInfo(), which may be different from UI language.
    # (See http://msdn.microsoft.com/en-us/library/dd374098(v=VS.85).aspx )
    try:
        import ctypes
        langid = ctypes.windll.kernel32.GetUserDefaultUILanguage()
        _languages = [locale.windows_locale[langid]]
    except (ImportError, AttributeError, KeyError):
        # ctypes not found or unknown langid
        pass

_ugettext = None

def setdatapath(datapath):
    datapath = pycompat.fsdecode(datapath)
    localedir = os.path.join(datapath, r'locale')
    t = gettextmod.translation(r'hg', localedir, _languages, fallback=True)
    global _ugettext
    try:
        _ugettext = t.ugettext
    except AttributeError:
        _ugettext = t.gettext

_msgcache = {}  # encoding: {message: translation}

def gettext(message):
    """Translate message.

    The message is looked up in the catalog to get a Unicode string,
    which is encoded in the local encoding before being returned.

    Important: message is restricted to characters in the encoding
    given by sys.getdefaultencoding() which is most likely 'ascii'.
    """
    # If message is None, t.ugettext will return u'None' as the
    # translation whereas our callers expect us to return None.
    if message is None or not _ugettext:
        return message

    cache = _msgcache.setdefault(encoding.encoding, {})
    if message not in cache:
        if type(message) is unicode:
            # goofy unicode docstrings in test
            paragraphs = message.split(u'\n\n')
        else:
            paragraphs = [p.decode("ascii") for p in message.split('\n\n')]
        # Be careful not to translate the empty string -- it holds the
        # meta data of the .po file.
        u = u'\n\n'.join([p and _ugettext(p) or u'' for p in paragraphs])
        try:
            # encoding.tolocal cannot be used since it will first try to
            # decode the Unicode string. Calling u.decode(enc) really
            # means u.encode(sys.getdefaultencoding()).decode(enc). Since
            # the Python encoding defaults to 'ascii', this fails if the
            # translated string use non-ASCII characters.
            encodingstr = pycompat.sysstr(encoding.encoding)
            cache[message] = u.encode(encodingstr, "replace")
        except LookupError:
            # An unknown encoding results in a LookupError.
            cache[message] = message
    return cache[message]

def _plain():
    if ('HGPLAIN' not in encoding.environ
        and 'HGPLAINEXCEPT' not in encoding.environ):
        return False
    exceptions = encoding.environ.get('HGPLAINEXCEPT', '').strip().split(',')
    return 'i18n' not in exceptions

if _plain():
    _ = lambda message: message
else:
    _ = gettext