view rust/README.rst @ 37631:2f626233859b

wireproto: implement batching on peer executor interface This is a bit more complicated than non-batch requests because we need to buffer sends until the last request arrives *and* we need to support resolving futures as data arrives from the remote. In a classical concurrent.futures executor model, the future "starts" as soon as it is submitted. However, we have nothing to start until the last command is submitted. If we did nothing, calling result() would deadlock, since the future hasn't "started." So in the case where we queue the command, we return a special future type whose result() will trigger sendcommands(). This eliminates the deadlock potential. It also serves as a check against callers who may be calling result() prematurely, as it will prevent any subsequent callcommands() from working. This behavior is slightly annoying and a bit restrictive. But it's the world that half duplex connections forces on us. In order to support streaming responses, we were previously using a generator. But with a futures-based API, we're using futures and not generators. So in order to get streaming, we need a background thread to read data from the server. The approach taken in this patch is to leverage the ThreadPoolExecutor from concurrent.futures for managing a background thread. We create an executor and future that resolves when all response data is processed (or an error occurs). When exiting the context manager, we wait on that background reading before returning. I was hoping we could manually spin up a threading.Thread and this would be simple. But I ran into a few deadlocks when implementing. After looking at the source code to concurrent.futures, I figured it would just be easier to use a ThreadPoolExecutor than implement all the code needed to manually manage a thread. To prove this works, a use of the batch API in discovery has been updated. Differential Revision: https://phab.mercurial-scm.org/D3269
author Gregory Szorc <gregory.szorc@gmail.com>
date Fri, 13 Apr 2018 11:02:34 -0700
parents 964212780daf
children 8a3b045d9086
line wrap: on
line source

===================
Mercurial Rust Code
===================

This directory contains various Rust code for the Mercurial project.

The top-level ``Cargo.toml`` file defines a workspace containing
all primary Mercurial crates.

Building
========

To build the Rust components::

   $ cargo build

If you prefer a non-debug / release configuration::

   $ cargo build --release

Features
--------

The following Cargo features are available:

localdev (default)
   Produce files that work with an in-source-tree build.

   In this mode, the build finds and uses a ``python2.7`` binary from
   ``PATH``. The ``hg`` binary assumes it runs from ``rust/target/<target>hg``
   and it finds Mercurial files at ``dirname($0)/../../../``.

Build Mechanism
---------------

The produced ``hg`` binary is *bound* to a CPython installation. The
binary links against and loads a CPython library that is discovered
at build time (by a ``build.rs`` Cargo build script). The Python
standard library defined by this CPython installation is also used.

Finding the appropriate CPython installation to use is done by
the ``python27-sys`` crate's ``build.rs``. Its search order is::

1. ``PYTHON_SYS_EXECUTABLE`` environment variable.
2. ``python`` executable on ``PATH``
3. ``python2`` executable on ``PATH``
4. ``python2.7`` executable on ``PATH``

Additional verification of the found Python will be performed by our
``build.rs`` to ensure it meets Mercurial's requirements.

Details about the build-time configured Python are built into the
produced ``hg`` binary. This means that a built ``hg`` binary is only
suitable for a specific, well-defined role. These roles are controlled
by Cargo features (see above).

Running
=======

The ``hgcli`` crate produces an ``hg`` binary. You can run this binary
via ``cargo run``::

   $ cargo run --manifest-path hgcli/Cargo.toml

Or directly::

   $ target/debug/hg
   $ target/release/hg

You can also run the test harness with this binary::

   $ ./run-tests.py --with-hg ../rust/target/debug/hg

.. note::

   Integration with the test harness is still preliminary. Remember to
   ``cargo build`` after changes because the test harness doesn't yet
   automatically build Rust code.