mercurial/manifest.py
author Bryan O'Sullivan <bryano@fb.com>
Tue, 16 Apr 2013 10:08:18 -0700
changeset 18986 2f7186400a07
parent 18821 40b4b1f9b7a0
child 20075 f8737bce736a
permissions -rw-r--r--
ancestor: a new algorithm that is faster for nodes near tip Instead of walking all the way to the root of the DAG, we generate a set of candidate GCA revs, then figure out which ones will win the race to the root (usually without needing to traverse all the way to the root). In the common case of nodes that are close to each other in both revision number and topology, this is usually a big win: it makes "hg --time debugancestors" up to 9 times faster than the more general ancestor function when measured on heads of the linux-2.6 hg repo. Victory is not assured, however. The older function can still win by a large margin if one node is much closer to the root than the other, or by a much smaller amount if one is an ancestor of the other. For now, we've also got a small paranoid harness function that calls both ancestor functions on every input and ensures that they give equivalent answers. Even without the checker function, the old ancestor function needs to stay alive for the time being, as its generality is used by context.filectx.merge.

# manifest.py - manifest revision class for mercurial
#
# Copyright 2005-2007 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from i18n import _
import mdiff, parsers, error, revlog, util, dicthelpers
import array, struct

class manifestdict(dict):
    def __init__(self, mapping=None, flags=None):
        if mapping is None:
            mapping = {}
        if flags is None:
            flags = {}
        dict.__init__(self, mapping)
        self._flags = flags
    def flags(self, f):
        return self._flags.get(f, "")
    def withflags(self):
        return set(self._flags.keys())
    def set(self, f, flags):
        self._flags[f] = flags
    def copy(self):
        return manifestdict(self, dict.copy(self._flags))
    def flagsdiff(self, d2):
        return dicthelpers.diff(self._flags, d2._flags, "")

class manifest(revlog.revlog):
    def __init__(self, opener):
        # we expect to deal with not more than three revs at a time in merge
        self._mancache = util.lrucachedict(3)
        revlog.revlog.__init__(self, opener, "00manifest.i")

    def parse(self, lines):
        mfdict = manifestdict()
        parsers.parse_manifest(mfdict, mfdict._flags, lines)
        return mfdict

    def readdelta(self, node):
        r = self.rev(node)
        return self.parse(mdiff.patchtext(self.revdiff(self.deltaparent(r), r)))

    def readfast(self, node):
        '''use the faster of readdelta or read'''
        r = self.rev(node)
        deltaparent = self.deltaparent(r)
        if deltaparent != revlog.nullrev and deltaparent in self.parentrevs(r):
            return self.readdelta(node)
        return self.read(node)

    def read(self, node):
        if node == revlog.nullid:
            return manifestdict() # don't upset local cache
        if node in self._mancache:
            return self._mancache[node][0]
        text = self.revision(node)
        arraytext = array.array('c', text)
        mapping = self.parse(text)
        self._mancache[node] = (mapping, arraytext)
        return mapping

    def _search(self, m, s, lo=0, hi=None):
        '''return a tuple (start, end) that says where to find s within m.

        If the string is found m[start:end] are the line containing
        that string.  If start == end the string was not found and
        they indicate the proper sorted insertion point.

        m should be a buffer or a string
        s is a string'''
        def advance(i, c):
            while i < lenm and m[i] != c:
                i += 1
            return i
        if not s:
            return (lo, lo)
        lenm = len(m)
        if not hi:
            hi = lenm
        while lo < hi:
            mid = (lo + hi) // 2
            start = mid
            while start > 0 and m[start - 1] != '\n':
                start -= 1
            end = advance(start, '\0')
            if m[start:end] < s:
                # we know that after the null there are 40 bytes of sha1
                # this translates to the bisect lo = mid + 1
                lo = advance(end + 40, '\n') + 1
            else:
                # this translates to the bisect hi = mid
                hi = start
        end = advance(lo, '\0')
        found = m[lo:end]
        if s == found:
            # we know that after the null there are 40 bytes of sha1
            end = advance(end + 40, '\n')
            return (lo, end + 1)
        else:
            return (lo, lo)

    def find(self, node, f):
        '''look up entry for a single file efficiently.
        return (node, flags) pair if found, (None, None) if not.'''
        if node in self._mancache:
            mapping = self._mancache[node][0]
            return mapping.get(f), mapping.flags(f)
        text = self.revision(node)
        start, end = self._search(text, f)
        if start == end:
            return None, None
        l = text[start:end]
        f, n = l.split('\0')
        return revlog.bin(n[:40]), n[40:-1]

    def add(self, map, transaction, link, p1=None, p2=None,
            changed=None):
        # apply the changes collected during the bisect loop to our addlist
        # return a delta suitable for addrevision
        def addlistdelta(addlist, x):
            # for large addlist arrays, building a new array is cheaper
            # than repeatedly modifying the existing one
            currentposition = 0
            newaddlist = array.array('c')

            for start, end, content in x:
                newaddlist += addlist[currentposition:start]
                if content:
                    newaddlist += array.array('c', content)

                currentposition = end

            newaddlist += addlist[currentposition:]

            deltatext = "".join(struct.pack(">lll", start, end, len(content))
                           + content for start, end, content in x)
            return deltatext, newaddlist

        def checkforbidden(l):
            for f in l:
                if '\n' in f or '\r' in f:
                    raise error.RevlogError(
                        _("'\\n' and '\\r' disallowed in filenames: %r") % f)

        # if we're using the cache, make sure it is valid and
        # parented by the same node we're diffing against
        if not (changed and p1 and (p1 in self._mancache)):
            files = sorted(map)
            checkforbidden(files)

            # if this is changed to support newlines in filenames,
            # be sure to check the templates/ dir again (especially *-raw.tmpl)
            hex, flags = revlog.hex, map.flags
            text = ''.join("%s\0%s%s\n" % (f, hex(map[f]), flags(f))
                           for f in files)
            arraytext = array.array('c', text)
            cachedelta = None
        else:
            added, removed = changed
            addlist = self._mancache[p1][1]

            checkforbidden(added)
            # combine the changed lists into one list for sorting
            work = [(x, False) for x in added]
            work.extend((x, True) for x in removed)
            # this could use heapq.merge() (from Python 2.6+) or equivalent
            # since the lists are already sorted
            work.sort()

            delta = []
            dstart = None
            dend = None
            dline = [""]
            start = 0
            # zero copy representation of addlist as a buffer
            addbuf = util.buffer(addlist)

            # start with a readonly loop that finds the offset of
            # each line and creates the deltas
            for f, todelete in work:
                # bs will either be the index of the item or the insert point
                start, end = self._search(addbuf, f, start)
                if not todelete:
                    l = "%s\0%s%s\n" % (f, revlog.hex(map[f]), map.flags(f))
                else:
                    if start == end:
                        # item we want to delete was not found, error out
                        raise AssertionError(
                                _("failed to remove %s from manifest") % f)
                    l = ""
                if dstart is not None and dstart <= start and dend >= start:
                    if dend < end:
                        dend = end
                    if l:
                        dline.append(l)
                else:
                    if dstart is not None:
                        delta.append([dstart, dend, "".join(dline)])
                    dstart = start
                    dend = end
                    dline = [l]

            if dstart is not None:
                delta.append([dstart, dend, "".join(dline)])
            # apply the delta to the addlist, and get a delta for addrevision
            deltatext, addlist = addlistdelta(addlist, delta)
            cachedelta = (self.rev(p1), deltatext)
            arraytext = addlist
            text = util.buffer(arraytext)

        n = self.addrevision(text, transaction, link, p1, p2, cachedelta)
        self._mancache[n] = (map, arraytext)

        return n