mercurial/setdiscovery.py
author Bryan O'Sullivan <bryano@fb.com>
Tue, 16 Apr 2013 10:08:18 -0700
changeset 18986 2f7186400a07
parent 17426 9724f8f8850b
child 20034 1e5b38a919dd
permissions -rw-r--r--
ancestor: a new algorithm that is faster for nodes near tip Instead of walking all the way to the root of the DAG, we generate a set of candidate GCA revs, then figure out which ones will win the race to the root (usually without needing to traverse all the way to the root). In the common case of nodes that are close to each other in both revision number and topology, this is usually a big win: it makes "hg --time debugancestors" up to 9 times faster than the more general ancestor function when measured on heads of the linux-2.6 hg repo. Victory is not assured, however. The older function can still win by a large margin if one node is much closer to the root than the other, or by a much smaller amount if one is an ancestor of the other. For now, we've also got a small paranoid harness function that calls both ancestor functions on every input and ensures that they give equivalent answers. Even without the checker function, the old ancestor function needs to stay alive for the time being, as its generality is used by context.filectx.merge.

# setdiscovery.py - improved discovery of common nodeset for mercurial
#
# Copyright 2010 Benoit Boissinot <bboissin@gmail.com>
# and Peter Arrenbrecht <peter@arrenbrecht.ch>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from node import nullid
from i18n import _
import random, util, dagutil

def _updatesample(dag, nodes, sample, always, quicksamplesize=0):
    # if nodes is empty we scan the entire graph
    if nodes:
        heads = dag.headsetofconnecteds(nodes)
    else:
        heads = dag.heads()
    dist = {}
    visit = util.deque(heads)
    seen = set()
    factor = 1
    while visit:
        curr = visit.popleft()
        if curr in seen:
            continue
        d = dist.setdefault(curr, 1)
        if d > factor:
            factor *= 2
        if d == factor:
            if curr not in always: # need this check for the early exit below
                sample.add(curr)
                if quicksamplesize and (len(sample) >= quicksamplesize):
                    return
        seen.add(curr)
        for p in dag.parents(curr):
            if not nodes or p in nodes:
                dist.setdefault(p, d + 1)
                visit.append(p)

def _setupsample(dag, nodes, size):
    if len(nodes) <= size:
        return set(nodes), None, 0
    always = dag.headsetofconnecteds(nodes)
    desiredlen = size - len(always)
    if desiredlen <= 0:
        # This could be bad if there are very many heads, all unknown to the
        # server. We're counting on long request support here.
        return always, None, desiredlen
    return always, set(), desiredlen

def _takequicksample(dag, nodes, size, initial):
    always, sample, desiredlen = _setupsample(dag, nodes, size)
    if sample is None:
        return always
    if initial:
        fromset = None
    else:
        fromset = nodes
    _updatesample(dag, fromset, sample, always, quicksamplesize=desiredlen)
    sample.update(always)
    return sample

def _takefullsample(dag, nodes, size):
    always, sample, desiredlen = _setupsample(dag, nodes, size)
    if sample is None:
        return always
    # update from heads
    _updatesample(dag, nodes, sample, always)
    # update from roots
    _updatesample(dag.inverse(), nodes, sample, always)
    assert sample
    if len(sample) > desiredlen:
        sample = set(random.sample(sample, desiredlen))
    elif len(sample) < desiredlen:
        more = desiredlen - len(sample)
        sample.update(random.sample(list(nodes - sample - always), more))
    sample.update(always)
    return sample

def findcommonheads(ui, local, remote,
                    initialsamplesize=100,
                    fullsamplesize=200,
                    abortwhenunrelated=True):
    '''Return a tuple (common, anyincoming, remoteheads) used to identify
    missing nodes from or in remote.
    '''
    roundtrips = 0
    cl = local.changelog
    dag = dagutil.revlogdag(cl)

    # early exit if we know all the specified remote heads already
    ui.debug("query 1; heads\n")
    roundtrips += 1
    ownheads = dag.heads()
    sample = ownheads
    if remote.local():
        # stopgap until we have a proper localpeer that supports batch()
        srvheadhashes = remote.heads()
        yesno = remote.known(dag.externalizeall(sample))
    elif remote.capable('batch'):
        batch = remote.batch()
        srvheadhashesref = batch.heads()
        yesnoref = batch.known(dag.externalizeall(sample))
        batch.submit()
        srvheadhashes = srvheadhashesref.value
        yesno = yesnoref.value
    else:
        # compatibility with pre-batch, but post-known remotes during 1.9
        # development
        srvheadhashes = remote.heads()
        sample = []

    if cl.tip() == nullid:
        if srvheadhashes != [nullid]:
            return [nullid], True, srvheadhashes
        return [nullid], False, []

    # start actual discovery (we note this before the next "if" for
    # compatibility reasons)
    ui.status(_("searching for changes\n"))

    srvheads = dag.internalizeall(srvheadhashes, filterunknown=True)
    if len(srvheads) == len(srvheadhashes):
        ui.debug("all remote heads known locally\n")
        return (srvheadhashes, False, srvheadhashes,)

    if sample and util.all(yesno):
        ui.note(_("all local heads known remotely\n"))
        ownheadhashes = dag.externalizeall(ownheads)
        return (ownheadhashes, True, srvheadhashes,)

    # full blown discovery

    # own nodes where I don't know if remote knows them
    undecided = dag.nodeset()
    # own nodes I know we both know
    common = set()
    # own nodes I know remote lacks
    missing = set()

    # treat remote heads (and maybe own heads) as a first implicit sample
    # response
    common.update(dag.ancestorset(srvheads))
    undecided.difference_update(common)

    full = False
    while undecided:

        if sample:
            commoninsample = set(n for i, n in enumerate(sample) if yesno[i])
            common.update(dag.ancestorset(commoninsample, common))

            missinginsample = [n for i, n in enumerate(sample) if not yesno[i]]
            missing.update(dag.descendantset(missinginsample, missing))

            undecided.difference_update(missing)
            undecided.difference_update(common)

        if not undecided:
            break

        if full:
            ui.note(_("sampling from both directions\n"))
            sample = _takefullsample(dag, undecided, size=fullsamplesize)
        elif common:
            # use cheapish initial sample
            ui.debug("taking initial sample\n")
            sample = _takefullsample(dag, undecided, size=fullsamplesize)
        else:
            # use even cheaper initial sample
            ui.debug("taking quick initial sample\n")
            sample = _takequicksample(dag, undecided, size=initialsamplesize,
                                      initial=True)

        roundtrips += 1
        ui.progress(_('searching'), roundtrips, unit=_('queries'))
        ui.debug("query %i; still undecided: %i, sample size is: %i\n"
                 % (roundtrips, len(undecided), len(sample)))
        # indices between sample and externalized version must match
        sample = list(sample)
        yesno = remote.known(dag.externalizeall(sample))
        full = True

    result = dag.headsetofconnecteds(common)
    ui.progress(_('searching'), None)
    ui.debug("%d total queries\n" % roundtrips)

    if not result and srvheadhashes != [nullid]:
        if abortwhenunrelated:
            raise util.Abort(_("repository is unrelated"))
        else:
            ui.warn(_("warning: repository is unrelated\n"))
        return (set([nullid]), True, srvheadhashes,)

    anyincoming = (srvheadhashes != [nullid])
    return dag.externalizeall(result), anyincoming, srvheadhashes