view mercurial/i18n.py @ 30442:41a8106789ca

util: implement zstd compression engine Now that zstd is vendored and being built (in some configurations), we can implement a compression engine for zstd! The zstd engine is a little different from existing engines. Because it may not always be present, we have to defer load the module in case importing it fails. We facilitate this via a cached property that holds a reference to the module or None. The "available" method is implemented to reflect reality. The zstd engine declares its ability to handle bundles using the "zstd" human name and the "ZS" internal name. The latter was chosen because internal names are 2 characters (by only convention I think) and "ZS" seems reasonable. The engine, like others, supports specifying the compression level. However, there are no consumers of this API that yet pass in that argument. I have plans to change that, so stay tuned. Since all we need to do to support bundle generation with a new compression engine is implement and register the compression engine, bundle generation with zstd "just works!" Tests demonstrating this have been added. How does performance of zstd for bundle generation compare? On the mozilla-unified repo, `hg bundle --all -t <engine>-v2` yields the following on my i7-6700K on Linux: engine CPU time bundle size vs orig size throughput none 97.0s 4,054,405,584 100.0% 41.8 MB/s bzip2 (l=9) 393.6s 975,343,098 24.0% 10.3 MB/s gzip (l=6) 184.0s 1,140,533,074 28.1% 22.0 MB/s zstd (l=1) 108.2s 1,119,434,718 27.6% 37.5 MB/s zstd (l=2) 111.3s 1,078,328,002 26.6% 36.4 MB/s zstd (l=3) 113.7s 1,011,823,727 25.0% 35.7 MB/s zstd (l=4) 116.0s 1,008,965,888 24.9% 35.0 MB/s zstd (l=5) 121.0s 977,203,148 24.1% 33.5 MB/s zstd (l=6) 131.7s 927,360,198 22.9% 30.8 MB/s zstd (l=7) 139.0s 912,808,505 22.5% 29.2 MB/s zstd (l=12) 198.1s 854,527,714 21.1% 20.5 MB/s zstd (l=18) 681.6s 789,750,690 19.5% 5.9 MB/s On compression, zstd for bundle generation delivers: * better compression than gzip with significantly less CPU utilization * better than bzip2 compression ratios while still being significantly faster than gzip * ability to aggressively tune compression level to achieve significantly smaller bundles That last point is important. With clone bundles, a server can pre-generate a bundle file, upload it to a static file server, and redirect clients to transparently download it during clone. The server could choose to produce a zstd bundle with the highest compression settings possible. This would take a very long time - a magnitude longer than a typical zstd bundle generation - but the result would be hundreds of megabytes smaller! For the clone volume we do at Mozilla, this could translate to petabytes of bandwidth savings per year and faster clones (due to smaller transfer size). I don't have detailed numbers to report on decompression. However, zstd decompression is fast: >1 GB/s output throughput on this machine, even through the Python bindings. And it can do that regardless of the compression level of the input. By the time you have enough data to worry about overhead of decompression, you have plenty of other things to worry about performance wise. zstd is wins all around. I can't wait to implement support for it on the wire protocol and in revlogs.
author Gregory Szorc <gregory.szorc@gmail.com>
date Fri, 11 Nov 2016 01:10:07 -0800
parents 8321b083a83d
children d524c88511a7
line wrap: on
line source

# i18n.py - internationalization support for mercurial
#
# Copyright 2005, 2006 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import

import gettext as gettextmod
import locale
import os
import sys

from . import (
    encoding,
    pycompat,
)

# modelled after templater.templatepath:
if getattr(sys, 'frozen', None) is not None:
    module = sys.executable
else:
    module = __file__

try:
    unicode
except NameError:
    unicode = str

_languages = None
if (os.name == 'nt'
    and 'LANGUAGE' not in encoding.environ
    and 'LC_ALL' not in encoding.environ
    and 'LC_MESSAGES' not in encoding.environ
    and 'LANG' not in encoding.environ):
    # Try to detect UI language by "User Interface Language Management" API
    # if no locale variables are set. Note that locale.getdefaultlocale()
    # uses GetLocaleInfo(), which may be different from UI language.
    # (See http://msdn.microsoft.com/en-us/library/dd374098(v=VS.85).aspx )
    try:
        import ctypes
        langid = ctypes.windll.kernel32.GetUserDefaultUILanguage()
        _languages = [locale.windows_locale[langid]]
    except (ImportError, AttributeError, KeyError):
        # ctypes not found or unknown langid
        pass

_ugettext = None

def setdatapath(datapath):
    datapath = pycompat.fsdecode(datapath)
    localedir = os.path.join(datapath, pycompat.sysstr('locale'))
    t = gettextmod.translation('hg', localedir, _languages, fallback=True)
    global _ugettext
    try:
        _ugettext = t.ugettext
    except AttributeError:
        _ugettext = t.gettext

_msgcache = {}

def gettext(message):
    """Translate message.

    The message is looked up in the catalog to get a Unicode string,
    which is encoded in the local encoding before being returned.

    Important: message is restricted to characters in the encoding
    given by sys.getdefaultencoding() which is most likely 'ascii'.
    """
    # If message is None, t.ugettext will return u'None' as the
    # translation whereas our callers expect us to return None.
    if message is None or not _ugettext:
        return message

    if message not in _msgcache:
        if type(message) is unicode:
            # goofy unicode docstrings in test
            paragraphs = message.split(u'\n\n')
        else:
            paragraphs = [p.decode("ascii") for p in message.split('\n\n')]
        # Be careful not to translate the empty string -- it holds the
        # meta data of the .po file.
        u = u'\n\n'.join([p and _ugettext(p) or u'' for p in paragraphs])
        try:
            # encoding.tolocal cannot be used since it will first try to
            # decode the Unicode string. Calling u.decode(enc) really
            # means u.encode(sys.getdefaultencoding()).decode(enc). Since
            # the Python encoding defaults to 'ascii', this fails if the
            # translated string use non-ASCII characters.
            encodingstr = pycompat.sysstr(encoding.encoding)
            _msgcache[message] = u.encode(encodingstr, "replace")
        except LookupError:
            # An unknown encoding results in a LookupError.
            _msgcache[message] = message
    return _msgcache[message]

def _plain():
    if ('HGPLAIN' not in encoding.environ
        and 'HGPLAINEXCEPT' not in encoding.environ):
        return False
    exceptions = encoding.environ.get('HGPLAINEXCEPT', '').strip().split(',')
    return 'i18n' not in exceptions

if _plain():
    _ = lambda message: message
else:
    _ = gettext