Mercurial > hg
view mercurial/ancestor.py @ 4828:41ad4105dde9
Add symlink method to util.opener.
Differences from os.symlink:
- the symlink name is relative to the opener base directory
- if a file with that name already exists, it's removed
- if necessary, parent directories are created
- if the system (OS or filesystem) doesn't support symlinks, a
regular file is created. Its contents are the symlink target.
author | Alexis S. L. Carvalho <alexis@cecm.usp.br> |
---|---|
date | Wed, 11 Jul 2007 17:40:41 -0300 |
parents | eb0b4a2d70a9 |
children | 20aa460a52b6 |
line wrap: on
line source
# ancestor.py - generic DAG ancestor algorithm for mercurial # # Copyright 2006 Matt Mackall <mpm@selenic.com> # # This software may be used and distributed according to the terms # of the GNU General Public License, incorporated herein by reference. import heapq def ancestor(a, b, pfunc): """ return the least common ancestor of nodes a and b or None if there is no such ancestor. pfunc must return a list of parent vertices """ if a == b: return a # find depth from root of all ancestors visit = [a, b] depth = {} while visit: vertex = visit[-1] pl = pfunc(vertex) if not pl: depth[vertex] = 0 visit.pop() else: for p in pl: if p == a or p == b: # did we find a or b as a parent? return p # we're done if p not in depth: visit.append(p) if visit[-1] == vertex: depth[vertex] = min([depth[p] for p in pl]) - 1 visit.pop() # traverse ancestors in order of decreasing distance from root def ancestors(vertex): h = [(depth[vertex], vertex)] seen = {} while h: d, n = heapq.heappop(h) if n not in seen: seen[n] = 1 yield (d, n) for p in pfunc(n): heapq.heappush(h, (depth[p], p)) def generations(vertex): sg, s = None, {} for g, v in ancestors(vertex): if g != sg: if sg: yield sg, s sg, s = g, {v:1} else: s[v] = 1 yield sg, s x = generations(a) y = generations(b) gx = x.next() gy = y.next() # increment each ancestor list until it is closer to root than # the other, or they match try: while 1: if gx[0] == gy[0]: for v in gx[1]: if v in gy[1]: return v gy = y.next() gx = x.next() elif gx[0] > gy[0]: gy = y.next() else: gx = x.next() except StopIteration: return None