Mercurial > hg
view mercurial/peer.py @ 37295:45b39c69fae0
wireproto: separate commands tables for version 1 and 2 commands
We can't easily reuse existing command handlers for version 2
commands because the response types will be different. e.g. many
commands return nodes encoded as hex. Our new wire protocol is
binary safe, so we'll wish to encode nodes as binary.
We /could/ teach each command handler to look at the protocol
handler and change behavior based on the version in use. However,
this would make logic a bit unwieldy over time and would make
it harder to design a unified protocol handler interface. I think
it's better to create a clean break between version 1 and version 2
of commands on the server.
What I imagine happening is we will have separate @wireprotocommand
functions for each protocol generation. Those functions will parse the
request, dispatch to a common function to process it, then generate
the response in its own, transport-specific manner.
This commit establishes a separate table for tracking version 1
commands from version 2 commands. The HTTP server pieces have been
updated to use this new table.
Most commands are marked as both version 1 and version 2, so there is
little practical impact to this change.
A side-effect of this change is we now rely on transport registration
in wireprototypes.TRANSPORTS and certain properties of the protocol
interface. So a test had to be updated to conform.
Differential Revision: https://phab.mercurial-scm.org/D2982
author | Gregory Szorc <gregory.szorc@gmail.com> |
---|---|
date | Wed, 28 Mar 2018 10:40:41 -0700 |
parents | 115efdd97088 |
children |
line wrap: on
line source
# peer.py - repository base classes for mercurial # # Copyright 2005, 2006 Matt Mackall <mpm@selenic.com> # Copyright 2006 Vadim Gelfer <vadim.gelfer@gmail.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import from . import ( error, pycompat, util, ) # abstract batching support class future(object): '''placeholder for a value to be set later''' def set(self, value): if util.safehasattr(self, 'value'): raise error.RepoError("future is already set") self.value = value class batcher(object): '''base class for batches of commands submittable in a single request All methods invoked on instances of this class are simply queued and return a a future for the result. Once you call submit(), all the queued calls are performed and the results set in their respective futures. ''' def __init__(self): self.calls = [] def __getattr__(self, name): def call(*args, **opts): resref = future() # Please don't invent non-ascii method names, or you will # give core hg a very sad time. self.calls.append((name.encode('ascii'), args, opts, resref,)) return resref return call def submit(self): raise NotImplementedError() class iterbatcher(batcher): def submit(self): raise NotImplementedError() def results(self): raise NotImplementedError() class localiterbatcher(iterbatcher): def __init__(self, local): super(iterbatcher, self).__init__() self.local = local def submit(self): # submit for a local iter batcher is a noop pass def results(self): for name, args, opts, resref in self.calls: resref.set(getattr(self.local, name)(*args, **opts)) yield resref.value def batchable(f): '''annotation for batchable methods Such methods must implement a coroutine as follows: @batchable def sample(self, one, two=None): # Build list of encoded arguments suitable for your wire protocol: encargs = [('one', encode(one),), ('two', encode(two),)] # Create future for injection of encoded result: encresref = future() # Return encoded arguments and future: yield encargs, encresref # Assuming the future to be filled with the result from the batched # request now. Decode it: yield decode(encresref.value) The decorator returns a function which wraps this coroutine as a plain method, but adds the original method as an attribute called "batchable", which is used by remotebatch to split the call into separate encoding and decoding phases. ''' def plain(*args, **opts): batchable = f(*args, **opts) encargsorres, encresref = next(batchable) if not encresref: return encargsorres # a local result in this case self = args[0] cmd = pycompat.bytesurl(f.__name__) # ensure cmd is ascii bytestr encresref.set(self._submitone(cmd, encargsorres)) return next(batchable) setattr(plain, 'batchable', f) return plain