view tests/test-arbitraryfilectx.t @ 40417:49c7b701fdc2 stable

phase: add an archived phase This phase allows for hidden changesets in the "user space". It differs from the "internal" phase which is intended for internal by-product only. There have been discussions at the 4.8 sprint to use such phase to speedup cleanup after history rewriting operation. Shipping it in the same release as the 'internal-phase' groups the associated `requires` entry. The important bit is to have support for this phase in the earliest version of mercurial possible. Adding the UI to manipulate this new phase later seems fine. The current plan for archived usage and user interface are as follow. On a repository with internal-phase on and evolution off: * history rewriting command set rewritten changeset in the archived phase. (This mean updating the cleanupnodes method). * keep `hg unbundle .hg/strip-backup/X.hg` as a way to restore changeset for now (backup bundle need to contains phase data) * [maybe] add a `hg strip --soft` advance flag (a light way to expose the feature without getting in the way of a better UI) Mercurial 4.8 freeze is too close to get the above in by then. We don't introduce a new repository `requirement` as we reuse the one introduced with the 'archived' phase during the 4.8 cycle.
author Boris Feld <boris.feld@octobus.net>
date Wed, 17 Oct 2018 14:47:01 +0200
parents 9954d0e2ad00
children 5361f9ed8a30
line wrap: on
line source

Setup:
  $ cat > eval.py <<EOF
  > from __future__ import absolute_import
  > import filecmp
  > from mercurial import commands, context, pycompat, registrar
  > cmdtable = {}
  > command = registrar.command(cmdtable)
  > @command(b'eval', [], b'hg eval CMD')
  > def eval_(ui, repo, *cmds, **opts):
  >     cmd = b" ".join(cmds)
  >     res = pycompat.bytestr(eval(cmd, globals(), locals()))
  >     ui.warn(b"%s" % res)
  > EOF

  $ echo "[extensions]" >> $HGRCPATH
  $ echo "eval=`pwd`/eval.py" >> $HGRCPATH

Arbitraryfilectx.cmp does not follow symlinks:
  $ mkdir case1
  $ cd case1
  $ hg init
#if symlink
  $ printf "A" > real_A
  $ printf "foo" > A
  $ printf "foo" > B
  $ ln -s A sym_A
  $ hg add .
  adding A
  adding B
  adding real_A
  adding sym_A
  $ hg commit -m "base"
#else
  $ hg import -q --bypass - <<EOF
  > # HG changeset patch
  > # User test
  > # Date 0 0
  > base
  > 
  > diff --git a/A b/A
  > new file mode 100644
  > --- /dev/null
  > +++ b/A
  > @@ -0,0 +1,1 @@
  > +foo
  > \ No newline at end of file
  > diff --git a/B b/B
  > new file mode 100644
  > --- /dev/null
  > +++ b/B
  > @@ -0,0 +1,1 @@
  > +foo
  > \ No newline at end of file
  > diff --git a/real_A b/real_A
  > new file mode 100644
  > --- /dev/null
  > +++ b/real_A
  > @@ -0,0 +1,1 @@
  > +A
  > \ No newline at end of file
  > diff --git a/sym_A b/sym_A
  > new file mode 120000
  > --- /dev/null
  > +++ b/sym_A
  > @@ -0,0 +1,1 @@
  > +A
  > \ No newline at end of file
  > EOF
  $ hg up -q
#endif

These files are different and should return True (different):
(Note that filecmp.cmp's return semantics are inverted from ours, so we invert
for simplicity):
  $ hg eval "context.arbitraryfilectx('A', repo).cmp(repo[None]['real_A'])"
  True (no-eol)
  $ hg eval "not filecmp.cmp('A', 'real_A')"
  True (no-eol)

These files are identical and should return False (same):
  $ hg eval "context.arbitraryfilectx('A', repo).cmp(repo[None]['A'])"
  False (no-eol)
  $ hg eval "context.arbitraryfilectx('A', repo).cmp(repo[None]['B'])"
  False (no-eol)
  $ hg eval "not filecmp.cmp('A', 'B')"
  False (no-eol)

This comparison should also return False, since A and sym_A are substantially
the same in the eyes of ``filectx.cmp``, which looks at data only.
  $ hg eval "context.arbitraryfilectx('real_A', repo).cmp(repo[None]['sym_A'])"
  False (no-eol)

A naive use of filecmp on those two would wrongly return True, since it follows
the symlink to "A", which has different contents.
#if symlink
  $ hg eval "not filecmp.cmp('real_A', 'sym_A')"
  True (no-eol)
#else
  $ hg eval "not filecmp.cmp('real_A', 'sym_A')"
  False (no-eol)
#endif