Mercurial > hg
view mercurial/narrowspec.py @ 43913:4b7d5d10c45d
exchange: ensure all outgoing subrepo references are present before pushing
We've run into occasional problems with people committing a repo, and then
amending or rebasing in the subrepo. That makes it so that the revision in the
parent can't be checked out, and the problem gets propagated on push. Mercurial
already tries to defend against this sort of dangling reference by pushing *all*
subrepo revisions first. This reuses the checks that trigger warnings in
`hg verify` to bail on the push unless using `--force`.
I thought about putting this on the server side, but at that point, all of the
data has been transferred, only to bail out. Additionally, SCM Manager hosts
subrepos in a location that isn't nested in the parent, so normal subrepo code
would complain that the subrepo is missing when run on the server.
Because the push command pushes subrepos before calling this exchange code, a
subrepo will be pushed before the parent is verified. Not great, but no
dangling references are exchanged, so it solves the problem. This code isn't in
the loop that pushes the subrepos because:
1) the list of outgoing revisions is needed to limit the scope of the check
2) the loop only accesses the current revision, and therefore can miss
subrepos that were dropped in previous commits
3) this code is called when pushing a subrepo, so the protection is recursive
I'm not sure if there's a cheap check for the list of files in the outgoing
bundle. If there is, that would provide a fast path to bypass this check for
people not using subrepos (or if no subrepo changes were made). There's
probably also room for verifying other references like tags. But since that
doesn't break checkouts, it's much less of a problem.
Differential Revision: https://phab.mercurial-scm.org/D7616
author | Matt Harbison <matt_harbison@yahoo.com> |
---|---|
date | Thu, 12 Dec 2019 12:30:15 -0500 |
parents | 8ff1ecfadcd1 |
children | 1922694d638f |
line wrap: on
line source
# narrowspec.py - methods for working with a narrow view of a repository # # Copyright 2017 Google, Inc. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import from .i18n import _ from .pycompat import getattr from .interfaces import repository from . import ( error, match as matchmod, merge, scmutil, sparse, util, ) # The file in .hg/store/ that indicates which paths exit in the store FILENAME = b'narrowspec' # The file in .hg/ that indicates which paths exit in the dirstate DIRSTATE_FILENAME = b'narrowspec.dirstate' # Pattern prefixes that are allowed in narrow patterns. This list MUST # only contain patterns that are fast and safe to evaluate. Keep in mind # that patterns are supplied by clients and executed on remote servers # as part of wire protocol commands. That means that changes to this # data structure influence the wire protocol and should not be taken # lightly - especially removals. VALID_PREFIXES = ( b'path:', b'rootfilesin:', ) def normalizesplitpattern(kind, pat): """Returns the normalized version of a pattern and kind. Returns a tuple with the normalized kind and normalized pattern. """ pat = pat.rstrip(b'/') _validatepattern(pat) return kind, pat def _numlines(s): """Returns the number of lines in s, including ending empty lines.""" # We use splitlines because it is Unicode-friendly and thus Python 3 # compatible. However, it does not count empty lines at the end, so trick # it by adding a character at the end. return len((s + b'x').splitlines()) def _validatepattern(pat): """Validates the pattern and aborts if it is invalid. Patterns are stored in the narrowspec as newline-separated POSIX-style bytestring paths. There's no escaping. """ # We use newlines as separators in the narrowspec file, so don't allow them # in patterns. if _numlines(pat) > 1: raise error.Abort(_(b'newlines are not allowed in narrowspec paths')) components = pat.split(b'/') if b'.' in components or b'..' in components: raise error.Abort( _(b'"." and ".." are not allowed in narrowspec paths') ) def normalizepattern(pattern, defaultkind=b'path'): """Returns the normalized version of a text-format pattern. If the pattern has no kind, the default will be added. """ kind, pat = matchmod._patsplit(pattern, defaultkind) return b'%s:%s' % normalizesplitpattern(kind, pat) def parsepatterns(pats): """Parses an iterable of patterns into a typed pattern set. Patterns are assumed to be ``path:`` if no prefix is present. For safety and performance reasons, only some prefixes are allowed. See ``validatepatterns()``. This function should be used on patterns that come from the user to normalize and validate them to the internal data structure used for representing patterns. """ res = {normalizepattern(orig) for orig in pats} validatepatterns(res) return res def validatepatterns(pats): """Validate that patterns are in the expected data structure and format. And that is a set of normalized patterns beginning with ``path:`` or ``rootfilesin:``. This function should be used to validate internal data structures and patterns that are loaded from sources that use the internal, prefixed pattern representation (but can't necessarily be fully trusted). """ if not isinstance(pats, set): raise error.ProgrammingError( b'narrow patterns should be a set; got %r' % pats ) for pat in pats: if not pat.startswith(VALID_PREFIXES): # Use a Mercurial exception because this can happen due to user # bugs (e.g. manually updating spec file). raise error.Abort( _(b'invalid prefix on narrow pattern: %s') % pat, hint=_( b'narrow patterns must begin with one of ' b'the following: %s' ) % b', '.join(VALID_PREFIXES), ) def format(includes, excludes): output = b'[include]\n' for i in sorted(includes - excludes): output += i + b'\n' output += b'[exclude]\n' for e in sorted(excludes): output += e + b'\n' return output def match(root, include=None, exclude=None): if not include: # Passing empty include and empty exclude to matchmod.match() # gives a matcher that matches everything, so explicitly use # the nevermatcher. return matchmod.never() return matchmod.match( root, b'', [], include=include or [], exclude=exclude or [] ) def parseconfig(ui, spec): # maybe we should care about the profiles returned too includepats, excludepats, profiles = sparse.parseconfig(ui, spec, b'narrow') if profiles: raise error.Abort( _( b"including other spec files using '%include' is not" b" supported in narrowspec" ) ) validatepatterns(includepats) validatepatterns(excludepats) return includepats, excludepats def load(repo): # Treat "narrowspec does not exist" the same as "narrowspec file exists # and is empty". spec = repo.svfs.tryread(FILENAME) return parseconfig(repo.ui, spec) def save(repo, includepats, excludepats): validatepatterns(includepats) validatepatterns(excludepats) spec = format(includepats, excludepats) repo.svfs.write(FILENAME, spec) def copytoworkingcopy(repo): spec = repo.svfs.read(FILENAME) repo.vfs.write(DIRSTATE_FILENAME, spec) def savebackup(repo, backupname): if repository.NARROW_REQUIREMENT not in repo.requirements: return svfs = repo.svfs svfs.tryunlink(backupname) util.copyfile(svfs.join(FILENAME), svfs.join(backupname), hardlink=True) def restorebackup(repo, backupname): if repository.NARROW_REQUIREMENT not in repo.requirements: return util.rename(repo.svfs.join(backupname), repo.svfs.join(FILENAME)) def savewcbackup(repo, backupname): if repository.NARROW_REQUIREMENT not in repo.requirements: return vfs = repo.vfs vfs.tryunlink(backupname) # It may not exist in old repos if vfs.exists(DIRSTATE_FILENAME): util.copyfile( vfs.join(DIRSTATE_FILENAME), vfs.join(backupname), hardlink=True ) def restorewcbackup(repo, backupname): if repository.NARROW_REQUIREMENT not in repo.requirements: return # It may not exist in old repos if repo.vfs.exists(backupname): util.rename(repo.vfs.join(backupname), repo.vfs.join(DIRSTATE_FILENAME)) def clearwcbackup(repo, backupname): if repository.NARROW_REQUIREMENT not in repo.requirements: return repo.vfs.tryunlink(backupname) def restrictpatterns(req_includes, req_excludes, repo_includes, repo_excludes): r""" Restricts the patterns according to repo settings, results in a logical AND operation :param req_includes: requested includes :param req_excludes: requested excludes :param repo_includes: repo includes :param repo_excludes: repo excludes :return: include patterns, exclude patterns, and invalid include patterns. >>> restrictpatterns({'f1','f2'}, {}, ['f1'], []) (set(['f1']), {}, []) >>> restrictpatterns({'f1'}, {}, ['f1','f2'], []) (set(['f1']), {}, []) >>> restrictpatterns({'f1/fc1', 'f3/fc3'}, {}, ['f1','f2'], []) (set(['f1/fc1']), {}, []) >>> restrictpatterns({'f1_fc1'}, {}, ['f1','f2'], []) ([], set(['path:.']), []) >>> restrictpatterns({'f1/../f2/fc2'}, {}, ['f1','f2'], []) (set(['f2/fc2']), {}, []) >>> restrictpatterns({'f1/../f3/fc3'}, {}, ['f1','f2'], []) ([], set(['path:.']), []) >>> restrictpatterns({'f1/$non_exitent_var'}, {}, ['f1','f2'], []) (set(['f1/$non_exitent_var']), {}, []) """ res_excludes = set(req_excludes) res_excludes.update(repo_excludes) invalid_includes = [] if not req_includes: res_includes = set(repo_includes) elif b'path:.' not in repo_includes: res_includes = [] for req_include in req_includes: req_include = util.expandpath(util.normpath(req_include)) if req_include in repo_includes: res_includes.append(req_include) continue valid = False for repo_include in repo_includes: if req_include.startswith(repo_include + b'/'): valid = True res_includes.append(req_include) break if not valid: invalid_includes.append(req_include) if len(res_includes) == 0: res_excludes = {b'path:.'} else: res_includes = set(res_includes) else: res_includes = set(req_includes) return res_includes, res_excludes, invalid_includes # These two are extracted for extensions (specifically for Google's CitC file # system) def _deletecleanfiles(repo, files): for f in files: repo.wvfs.unlinkpath(f) def _writeaddedfiles(repo, pctx, files): actions = merge.emptyactions() addgaction = actions[merge.ACTION_GET].append mf = repo[b'.'].manifest() for f in files: if not repo.wvfs.exists(f): addgaction((f, (mf.flags(f), False), b"narrowspec updated")) merge.applyupdates( repo, actions, wctx=repo[None], mctx=repo[b'.'], overwrite=False, wantfiledata=False, ) def checkworkingcopynarrowspec(repo): # Avoid infinite recursion when updating the working copy if getattr(repo, '_updatingnarrowspec', False): return storespec = repo.svfs.tryread(FILENAME) wcspec = repo.vfs.tryread(DIRSTATE_FILENAME) if wcspec != storespec: raise error.Abort( _(b"working copy's narrowspec is stale"), hint=_(b"run 'hg tracked --update-working-copy'"), ) def updateworkingcopy(repo, assumeclean=False): """updates the working copy and dirstate from the store narrowspec When assumeclean=True, files that are not known to be clean will also be deleted. It is then up to the caller to make sure they are clean. """ oldspec = repo.vfs.tryread(DIRSTATE_FILENAME) newspec = repo.svfs.tryread(FILENAME) repo._updatingnarrowspec = True oldincludes, oldexcludes = parseconfig(repo.ui, oldspec) newincludes, newexcludes = parseconfig(repo.ui, newspec) oldmatch = match(repo.root, include=oldincludes, exclude=oldexcludes) newmatch = match(repo.root, include=newincludes, exclude=newexcludes) addedmatch = matchmod.differencematcher(newmatch, oldmatch) removedmatch = matchmod.differencematcher(oldmatch, newmatch) ds = repo.dirstate lookup, status = ds.status( removedmatch, subrepos=[], ignored=True, clean=True, unknown=True ) trackeddirty = status.modified + status.added clean = status.clean if assumeclean: assert not trackeddirty clean.extend(lookup) else: trackeddirty.extend(lookup) _deletecleanfiles(repo, clean) uipathfn = scmutil.getuipathfn(repo) for f in sorted(trackeddirty): repo.ui.status( _(b'not deleting possibly dirty file %s\n') % uipathfn(f) ) for f in sorted(status.unknown): repo.ui.status(_(b'not deleting unknown file %s\n') % uipathfn(f)) for f in sorted(status.ignored): repo.ui.status(_(b'not deleting ignored file %s\n') % uipathfn(f)) for f in clean + trackeddirty: ds.drop(f) pctx = repo[b'.'] newfiles = [f for f in pctx.manifest().walk(addedmatch) if f not in ds] for f in newfiles: ds.normallookup(f) _writeaddedfiles(repo, pctx, newfiles) repo._updatingnarrowspec = False