Mercurial > hg
view mercurial/hbisect.py @ 39491:4ca7a67c94c8
sparse-revlog: add a test checking revlog deltas for a churning file
The test repository contains 5000 revisions and is therefore slow to build:
five minutes with CHG, over fifteen minutes without. It is too slow to build
during the test. Bundling all content produce a sizeable result, 20BM, too
large to be committed. Instead, we commit a script to build the expected
bundle and the test checks if the bundle is available. Any run of the script
will produce the same repository content, using resulting in the same hashes.
Using smaller repositories was tried, however, it misses most of the cases we
are planning to improve. Having them in a 5000 repository is already nice, we
usually see these case in repositories in the order of magnitude of one
million revisions.
This test will be very useful to check various changes strategy for building
delta to store in a sparse-revlog.
In this series we will focus our attention on the following metrics:
The ones that will impact the final storage performance (size, space):
* size of the revlog data file (".hg/store/data/*.d")
* chain length info
The ones that describe the deltas patterns:
* number of snapshot revision (and their level)
* size taken by snapshot revision (and their level)
author | Boris Feld <boris.feld@octobus.net> |
---|---|
date | Mon, 10 Sep 2018 09:08:24 -0700 |
parents | 71f189941791 |
children | 566daffc607d |
line wrap: on
line source
# changelog bisection for mercurial # # Copyright 2007 Matt Mackall # Copyright 2005, 2006 Benoit Boissinot <benoit.boissinot@ens-lyon.org> # # Inspired by git bisect, extension skeleton taken from mq.py. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import import collections from .i18n import _ from .node import ( hex, short, ) from . import ( error, ) def bisect(repo, state): """find the next node (if any) for testing during a bisect search. returns a (nodes, number, good) tuple. 'nodes' is the final result of the bisect if 'number' is 0. Otherwise 'number' indicates the remaining possible candidates for the search and 'nodes' contains the next bisect target. 'good' is True if bisect is searching for a first good changeset, False if searching for a first bad one. """ changelog = repo.changelog clparents = changelog.parentrevs skip = set([changelog.rev(n) for n in state['skip']]) def buildancestors(bad, good): badrev = min([changelog.rev(n) for n in bad]) ancestors = collections.defaultdict(lambda: None) for rev in repo.revs("descendants(%ln) - ancestors(%ln)", good, good): ancestors[rev] = [] if ancestors[badrev] is None: return badrev, None return badrev, ancestors good = False badrev, ancestors = buildancestors(state['bad'], state['good']) if not ancestors: # looking for bad to good transition? good = True badrev, ancestors = buildancestors(state['good'], state['bad']) bad = changelog.node(badrev) if not ancestors: # now we're confused if (len(state['bad']) == 1 and len(state['good']) == 1 and state['bad'] != state['good']): raise error.Abort(_("starting revisions are not directly related")) raise error.Abort(_("inconsistent state, %d:%s is good and bad") % (badrev, short(bad))) # build children dict children = {} visit = collections.deque([badrev]) candidates = [] while visit: rev = visit.popleft() if ancestors[rev] == []: candidates.append(rev) for prev in clparents(rev): if prev != -1: if prev in children: children[prev].append(rev) else: children[prev] = [rev] visit.append(prev) candidates.sort() # have we narrowed it down to one entry? # or have all other possible candidates besides 'bad' have been skipped? tot = len(candidates) unskipped = [c for c in candidates if (c not in skip) and (c != badrev)] if tot == 1 or not unskipped: return ([changelog.node(c) for c in candidates], 0, good) perfect = tot // 2 # find the best node to test best_rev = None best_len = -1 poison = set() for rev in candidates: if rev in poison: # poison children poison.update(children.get(rev, [])) continue a = ancestors[rev] or [rev] ancestors[rev] = None x = len(a) # number of ancestors y = tot - x # number of non-ancestors value = min(x, y) # how good is this test? if value > best_len and rev not in skip: best_len = value best_rev = rev if value == perfect: # found a perfect candidate? quit early break if y < perfect and rev not in skip: # all downhill from here? # poison children poison.update(children.get(rev, [])) continue for c in children.get(rev, []): if ancestors[c]: ancestors[c] = list(set(ancestors[c] + a)) else: ancestors[c] = a + [c] assert best_rev is not None best_node = changelog.node(best_rev) return ([best_node], tot, good) def extendrange(repo, state, nodes, good): # bisect is incomplete when it ends on a merge node and # one of the parent was not checked. parents = repo[nodes[0]].parents() if len(parents) > 1: if good: side = state['bad'] else: side = state['good'] num = len(set(i.node() for i in parents) & set(side)) if num == 1: return parents[0].ancestor(parents[1]) return None def load_state(repo): state = {'current': [], 'good': [], 'bad': [], 'skip': []} for l in repo.vfs.tryreadlines("bisect.state"): kind, node = l[:-1].split() node = repo.lookup(node) if kind not in state: raise error.Abort(_("unknown bisect kind %s") % kind) state[kind].append(node) return state def save_state(repo, state): f = repo.vfs("bisect.state", "w", atomictemp=True) with repo.wlock(): for kind in sorted(state): for node in state[kind]: f.write("%s %s\n" % (kind, hex(node))) f.close() def resetstate(repo): """remove any bisect state from the repository""" if repo.vfs.exists("bisect.state"): repo.vfs.unlink("bisect.state") def checkstate(state): """check we have both 'good' and 'bad' to define a range Raise Abort exception otherwise.""" if state['good'] and state['bad']: return True if not state['good']: raise error.Abort(_('cannot bisect (no known good revisions)')) else: raise error.Abort(_('cannot bisect (no known bad revisions)')) def get(repo, status): """ Return a list of revision(s) that match the given status: - ``good``, ``bad``, ``skip``: csets explicitly marked as good/bad/skip - ``goods``, ``bads`` : csets topologically good/bad - ``range`` : csets taking part in the bisection - ``pruned`` : csets that are goods, bads or skipped - ``untested`` : csets whose fate is yet unknown - ``ignored`` : csets ignored due to DAG topology - ``current`` : the cset currently being bisected """ state = load_state(repo) if status in ('good', 'bad', 'skip', 'current'): return map(repo.changelog.rev, state[status]) else: # In the following sets, we do *not* call 'bisect()' with more # than one level of recursion, because that can be very, very # time consuming. Instead, we always develop the expression as # much as possible. # 'range' is all csets that make the bisection: # - have a good ancestor and a bad descendant, or conversely # that's because the bisection can go either way range = '( bisect(bad)::bisect(good) | bisect(good)::bisect(bad) )' _t = repo.revs('bisect(good)::bisect(bad)') # The sets of topologically good or bad csets if len(_t) == 0: # Goods are topologically after bads goods = 'bisect(good)::' # Pruned good csets bads = '::bisect(bad)' # Pruned bad csets else: # Goods are topologically before bads goods = '::bisect(good)' # Pruned good csets bads = 'bisect(bad)::' # Pruned bad csets # 'pruned' is all csets whose fate is already known: good, bad, skip skips = 'bisect(skip)' # Pruned skipped csets pruned = '( (%s) | (%s) | (%s) )' % (goods, bads, skips) # 'untested' is all cset that are- in 'range', but not in 'pruned' untested = '( (%s) - (%s) )' % (range, pruned) # 'ignored' is all csets that were not used during the bisection # due to DAG topology, but may however have had an impact. # E.g., a branch merged between bads and goods, but whose branch- # point is out-side of the range. iba = '::bisect(bad) - ::bisect(good)' # Ignored bads' ancestors iga = '::bisect(good) - ::bisect(bad)' # Ignored goods' ancestors ignored = '( ( (%s) | (%s) ) - (%s) )' % (iba, iga, range) if status == 'range': return repo.revs(range) elif status == 'pruned': return repo.revs(pruned) elif status == 'untested': return repo.revs(untested) elif status == 'ignored': return repo.revs(ignored) elif status == "goods": return repo.revs(goods) elif status == "bads": return repo.revs(bads) else: raise error.ParseError(_('invalid bisect state')) def label(repo, node): rev = repo.changelog.rev(node) # Try explicit sets if rev in get(repo, 'good'): # i18n: bisect changeset status return _('good') if rev in get(repo, 'bad'): # i18n: bisect changeset status return _('bad') if rev in get(repo, 'skip'): # i18n: bisect changeset status return _('skipped') if rev in get(repo, 'untested') or rev in get(repo, 'current'): # i18n: bisect changeset status return _('untested') if rev in get(repo, 'ignored'): # i18n: bisect changeset status return _('ignored') # Try implicit sets if rev in get(repo, 'goods'): # i18n: bisect changeset status return _('good (implicit)') if rev in get(repo, 'bads'): # i18n: bisect changeset status return _('bad (implicit)') return None def printresult(ui, repo, state, displayer, nodes, good): if len(nodes) == 1: # narrowed it down to a single revision if good: ui.write(_("The first good revision is:\n")) else: ui.write(_("The first bad revision is:\n")) displayer.show(repo[nodes[0]]) extendnode = extendrange(repo, state, nodes, good) if extendnode is not None: ui.write(_('Not all ancestors of this changeset have been' ' checked.\nUse bisect --extend to continue the ' 'bisection from\nthe common ancestor, %s.\n') % extendnode) else: # multiple possible revisions if good: ui.write(_("Due to skipped revisions, the first " "good revision could be any of:\n")) else: ui.write(_("Due to skipped revisions, the first " "bad revision could be any of:\n")) for n in nodes: displayer.show(repo[n]) displayer.close()