Mercurial > hg
view mercurial/profiling.py @ 39491:4ca7a67c94c8
sparse-revlog: add a test checking revlog deltas for a churning file
The test repository contains 5000 revisions and is therefore slow to build:
five minutes with CHG, over fifteen minutes without. It is too slow to build
during the test. Bundling all content produce a sizeable result, 20BM, too
large to be committed. Instead, we commit a script to build the expected
bundle and the test checks if the bundle is available. Any run of the script
will produce the same repository content, using resulting in the same hashes.
Using smaller repositories was tried, however, it misses most of the cases we
are planning to improve. Having them in a 5000 repository is already nice, we
usually see these case in repositories in the order of magnitude of one
million revisions.
This test will be very useful to check various changes strategy for building
delta to store in a sparse-revlog.
In this series we will focus our attention on the following metrics:
The ones that will impact the final storage performance (size, space):
* size of the revlog data file (".hg/store/data/*.d")
* chain length info
The ones that describe the deltas patterns:
* number of snapshot revision (and their level)
* size taken by snapshot revision (and their level)
author | Boris Feld <boris.feld@octobus.net> |
---|---|
date | Mon, 10 Sep 2018 09:08:24 -0700 |
parents | 15a1e37f80bd |
children | b8f6a99ad89b |
line wrap: on
line source
# profiling.py - profiling functions # # Copyright 2016 Gregory Szorc <gregory.szorc@gmail.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import, print_function import contextlib from .i18n import _ from . import ( encoding, error, extensions, pycompat, util, ) def _loadprofiler(ui, profiler): """load profiler extension. return profile method, or None on failure""" extname = profiler extensions.loadall(ui, whitelist=[extname]) try: mod = extensions.find(extname) except KeyError: return None else: return getattr(mod, 'profile', None) @contextlib.contextmanager def lsprofile(ui, fp): format = ui.config('profiling', 'format') field = ui.config('profiling', 'sort') limit = ui.configint('profiling', 'limit') climit = ui.configint('profiling', 'nested') if format not in ['text', 'kcachegrind']: ui.warn(_("unrecognized profiling format '%s'" " - Ignored\n") % format) format = 'text' try: from . import lsprof except ImportError: raise error.Abort(_( 'lsprof not available - install from ' 'http://codespeak.net/svn/user/arigo/hack/misc/lsprof/')) p = lsprof.Profiler() p.enable(subcalls=True) try: yield finally: p.disable() if format == 'kcachegrind': from . import lsprofcalltree calltree = lsprofcalltree.KCacheGrind(p) calltree.output(fp) else: # format == 'text' stats = lsprof.Stats(p.getstats()) stats.sort(field) stats.pprint(limit=limit, file=fp, climit=climit) @contextlib.contextmanager def flameprofile(ui, fp): try: from flamegraph import flamegraph except ImportError: raise error.Abort(_( 'flamegraph not available - install from ' 'https://github.com/evanhempel/python-flamegraph')) # developer config: profiling.freq freq = ui.configint('profiling', 'freq') filter_ = None collapse_recursion = True thread = flamegraph.ProfileThread(fp, 1.0 / freq, filter_, collapse_recursion) start_time = util.timer() try: thread.start() yield finally: thread.stop() thread.join() print('Collected %d stack frames (%d unique) in %2.2f seconds.' % ( util.timer() - start_time, thread.num_frames(), thread.num_frames(unique=True))) @contextlib.contextmanager def statprofile(ui, fp): from . import statprof freq = ui.configint('profiling', 'freq') if freq > 0: # Cannot reset when profiler is already active. So silently no-op. if statprof.state.profile_level == 0: statprof.reset(freq) else: ui.warn(_("invalid sampling frequency '%s' - ignoring\n") % freq) track = ui.config('profiling', 'time-track') statprof.start(mechanism='thread', track=track) try: yield finally: data = statprof.stop() profformat = ui.config('profiling', 'statformat') formats = { 'byline': statprof.DisplayFormats.ByLine, 'bymethod': statprof.DisplayFormats.ByMethod, 'hotpath': statprof.DisplayFormats.Hotpath, 'json': statprof.DisplayFormats.Json, 'chrome': statprof.DisplayFormats.Chrome, } if profformat in formats: displayformat = formats[profformat] else: ui.warn(_('unknown profiler output format: %s\n') % profformat) displayformat = statprof.DisplayFormats.Hotpath kwargs = {} def fraction(s): if isinstance(s, (float, int)): return float(s) if s.endswith('%'): v = float(s[:-1]) / 100 else: v = float(s) if 0 <= v <= 1: return v raise ValueError(s) if profformat == 'chrome': showmin = ui.configwith(fraction, 'profiling', 'showmin', 0.005) showmax = ui.configwith(fraction, 'profiling', 'showmax') kwargs.update(minthreshold=showmin, maxthreshold=showmax) elif profformat == 'hotpath': # inconsistent config: profiling.showmin limit = ui.configwith(fraction, 'profiling', 'showmin', 0.05) kwargs[r'limit'] = limit statprof.display(fp, data=data, format=displayformat, **kwargs) class profile(object): """Start profiling. Profiling is active when the context manager is active. When the context manager exits, profiling results will be written to the configured output. """ def __init__(self, ui, enabled=True): self._ui = ui self._output = None self._fp = None self._fpdoclose = True self._profiler = None self._enabled = enabled self._entered = False self._started = False def __enter__(self): self._entered = True if self._enabled: self.start() return self def start(self): """Start profiling. The profiling will stop at the context exit. If the profiler was already started, this has no effect.""" if not self._entered: raise error.ProgrammingError() if self._started: return self._started = True profiler = encoding.environ.get('HGPROF') proffn = None if profiler is None: profiler = self._ui.config('profiling', 'type') if profiler not in ('ls', 'stat', 'flame'): # try load profiler from extension with the same name proffn = _loadprofiler(self._ui, profiler) if proffn is None: self._ui.warn(_("unrecognized profiler '%s' - ignored\n") % profiler) profiler = 'stat' self._output = self._ui.config('profiling', 'output') try: if self._output == 'blackbox': self._fp = util.stringio() elif self._output: path = self._ui.expandpath(self._output) self._fp = open(path, 'wb') elif pycompat.iswindows: # parse escape sequence by win32print() class uifp(object): def __init__(self, ui): self._ui = ui def write(self, data): self._ui.write_err(data) def flush(self): self._ui.flush() self._fpdoclose = False self._fp = uifp(self._ui) else: self._fpdoclose = False self._fp = self._ui.ferr if proffn is not None: pass elif profiler == 'ls': proffn = lsprofile elif profiler == 'flame': proffn = flameprofile else: proffn = statprofile self._profiler = proffn(self._ui, self._fp) self._profiler.__enter__() except: # re-raises self._closefp() raise def __exit__(self, exception_type, exception_value, traceback): propagate = None if self._profiler is not None: propagate = self._profiler.__exit__(exception_type, exception_value, traceback) if self._output == 'blackbox': val = 'Profile:\n%s' % self._fp.getvalue() # ui.log treats the input as a format string, # so we need to escape any % signs. val = val.replace('%', '%%') self._ui.log('profile', val) self._closefp() return propagate def _closefp(self): if self._fpdoclose and self._fp is not None: self._fp.close()