view mercurial/profiling.py @ 39491:4ca7a67c94c8

sparse-revlog: add a test checking revlog deltas for a churning file The test repository contains 5000 revisions and is therefore slow to build: five minutes with CHG, over fifteen minutes without. It is too slow to build during the test. Bundling all content produce a sizeable result, 20BM, too large to be committed. Instead, we commit a script to build the expected bundle and the test checks if the bundle is available. Any run of the script will produce the same repository content, using resulting in the same hashes. Using smaller repositories was tried, however, it misses most of the cases we are planning to improve. Having them in a 5000 repository is already nice, we usually see these case in repositories in the order of magnitude of one million revisions. This test will be very useful to check various changes strategy for building delta to store in a sparse-revlog. In this series we will focus our attention on the following metrics: The ones that will impact the final storage performance (size, space): * size of the revlog data file (".hg/store/data/*.d") * chain length info The ones that describe the deltas patterns: * number of snapshot revision (and their level) * size taken by snapshot revision (and their level)
author Boris Feld <boris.feld@octobus.net>
date Mon, 10 Sep 2018 09:08:24 -0700
parents 15a1e37f80bd
children b8f6a99ad89b
line wrap: on
line source

# profiling.py - profiling functions
#
# Copyright 2016 Gregory Szorc <gregory.szorc@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import, print_function

import contextlib

from .i18n import _
from . import (
    encoding,
    error,
    extensions,
    pycompat,
    util,
)

def _loadprofiler(ui, profiler):
    """load profiler extension. return profile method, or None on failure"""
    extname = profiler
    extensions.loadall(ui, whitelist=[extname])
    try:
        mod = extensions.find(extname)
    except KeyError:
        return None
    else:
        return getattr(mod, 'profile', None)

@contextlib.contextmanager
def lsprofile(ui, fp):
    format = ui.config('profiling', 'format')
    field = ui.config('profiling', 'sort')
    limit = ui.configint('profiling', 'limit')
    climit = ui.configint('profiling', 'nested')

    if format not in ['text', 'kcachegrind']:
        ui.warn(_("unrecognized profiling format '%s'"
                    " - Ignored\n") % format)
        format = 'text'

    try:
        from . import lsprof
    except ImportError:
        raise error.Abort(_(
            'lsprof not available - install from '
            'http://codespeak.net/svn/user/arigo/hack/misc/lsprof/'))
    p = lsprof.Profiler()
    p.enable(subcalls=True)
    try:
        yield
    finally:
        p.disable()

        if format == 'kcachegrind':
            from . import lsprofcalltree
            calltree = lsprofcalltree.KCacheGrind(p)
            calltree.output(fp)
        else:
            # format == 'text'
            stats = lsprof.Stats(p.getstats())
            stats.sort(field)
            stats.pprint(limit=limit, file=fp, climit=climit)

@contextlib.contextmanager
def flameprofile(ui, fp):
    try:
        from flamegraph import flamegraph
    except ImportError:
        raise error.Abort(_(
            'flamegraph not available - install from '
            'https://github.com/evanhempel/python-flamegraph'))
    # developer config: profiling.freq
    freq = ui.configint('profiling', 'freq')
    filter_ = None
    collapse_recursion = True
    thread = flamegraph.ProfileThread(fp, 1.0 / freq,
                                      filter_, collapse_recursion)
    start_time = util.timer()
    try:
        thread.start()
        yield
    finally:
        thread.stop()
        thread.join()
        print('Collected %d stack frames (%d unique) in %2.2f seconds.' % (
            util.timer() - start_time, thread.num_frames(),
            thread.num_frames(unique=True)))

@contextlib.contextmanager
def statprofile(ui, fp):
    from . import statprof

    freq = ui.configint('profiling', 'freq')
    if freq > 0:
        # Cannot reset when profiler is already active. So silently no-op.
        if statprof.state.profile_level == 0:
            statprof.reset(freq)
    else:
        ui.warn(_("invalid sampling frequency '%s' - ignoring\n") % freq)

    track = ui.config('profiling', 'time-track')
    statprof.start(mechanism='thread', track=track)

    try:
        yield
    finally:
        data = statprof.stop()

        profformat = ui.config('profiling', 'statformat')

        formats = {
            'byline': statprof.DisplayFormats.ByLine,
            'bymethod': statprof.DisplayFormats.ByMethod,
            'hotpath': statprof.DisplayFormats.Hotpath,
            'json': statprof.DisplayFormats.Json,
            'chrome': statprof.DisplayFormats.Chrome,
        }

        if profformat in formats:
            displayformat = formats[profformat]
        else:
            ui.warn(_('unknown profiler output format: %s\n') % profformat)
            displayformat = statprof.DisplayFormats.Hotpath

        kwargs = {}

        def fraction(s):
            if isinstance(s, (float, int)):
                return float(s)
            if s.endswith('%'):
                v = float(s[:-1]) / 100
            else:
                v = float(s)
            if 0 <= v <= 1:
                return v
            raise ValueError(s)

        if profformat == 'chrome':
            showmin = ui.configwith(fraction, 'profiling', 'showmin', 0.005)
            showmax = ui.configwith(fraction, 'profiling', 'showmax')
            kwargs.update(minthreshold=showmin, maxthreshold=showmax)
        elif profformat == 'hotpath':
            # inconsistent config: profiling.showmin
            limit = ui.configwith(fraction, 'profiling', 'showmin', 0.05)
            kwargs[r'limit'] = limit

        statprof.display(fp, data=data, format=displayformat, **kwargs)

class profile(object):
    """Start profiling.

    Profiling is active when the context manager is active. When the context
    manager exits, profiling results will be written to the configured output.
    """
    def __init__(self, ui, enabled=True):
        self._ui = ui
        self._output = None
        self._fp = None
        self._fpdoclose = True
        self._profiler = None
        self._enabled = enabled
        self._entered = False
        self._started = False

    def __enter__(self):
        self._entered = True
        if self._enabled:
            self.start()
        return self

    def start(self):
        """Start profiling.

        The profiling will stop at the context exit.

        If the profiler was already started, this has no effect."""
        if not self._entered:
            raise error.ProgrammingError()
        if self._started:
            return
        self._started = True
        profiler = encoding.environ.get('HGPROF')
        proffn = None
        if profiler is None:
            profiler = self._ui.config('profiling', 'type')
        if profiler not in ('ls', 'stat', 'flame'):
            # try load profiler from extension with the same name
            proffn = _loadprofiler(self._ui, profiler)
            if proffn is None:
                self._ui.warn(_("unrecognized profiler '%s' - ignored\n")
                              % profiler)
                profiler = 'stat'

        self._output = self._ui.config('profiling', 'output')

        try:
            if self._output == 'blackbox':
                self._fp = util.stringio()
            elif self._output:
                path = self._ui.expandpath(self._output)
                self._fp = open(path, 'wb')
            elif pycompat.iswindows:
                # parse escape sequence by win32print()
                class uifp(object):
                    def __init__(self, ui):
                        self._ui = ui
                    def write(self, data):
                        self._ui.write_err(data)
                    def flush(self):
                        self._ui.flush()
                self._fpdoclose = False
                self._fp = uifp(self._ui)
            else:
                self._fpdoclose = False
                self._fp = self._ui.ferr

            if proffn is not None:
                pass
            elif profiler == 'ls':
                proffn = lsprofile
            elif profiler == 'flame':
                proffn = flameprofile
            else:
                proffn = statprofile

            self._profiler = proffn(self._ui, self._fp)
            self._profiler.__enter__()
        except: # re-raises
            self._closefp()
            raise

    def __exit__(self, exception_type, exception_value, traceback):
        propagate = None
        if self._profiler is not None:
            propagate = self._profiler.__exit__(exception_type, exception_value,
                                                traceback)
            if self._output == 'blackbox':
                val = 'Profile:\n%s' % self._fp.getvalue()
                # ui.log treats the input as a format string,
                # so we need to escape any % signs.
                val = val.replace('%', '%%')
                self._ui.log('profile', val)
        self._closefp()
        return propagate

    def _closefp(self):
        if self._fpdoclose and self._fp is not None:
            self._fp.close()